
Poster: A Visual Programming Language for
Cellular Automata

Deacon McIntyre
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand
mcintydeac@myvuw.ac.nz

Michael Homer
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

mwh@ecs.vuw.ac.nz

Abstract—Cellular automata are simulations of cells interact-
ing with each other based on simple rules. Despite the simplicity,
they can exhibit complex behaviour, and have a number of
applications in fields such as medicine, biology, mathematics, and
more. As a result, people from a variety of different backgrounds
and skill-sets may find cellular automata useful to their work or
research. There exist tools to explore well-known automata, but
many require some form of textual programming ability, or do
not offer easy and approachable ways to customise automata.
Our software aims to be more accessible for those without
backgrounds in programming or cellular automata, to allow users
to more easily explore and modify automata. To achieve this, we
have developed a visual programming language, where users can
connect components to create their own automata from scratch,
without any textual programming.

Index Terms—visual languages, drag and drop, cellular au-
tomata

I. INTRODUCTION

Cellular automata (CA) have applications in a number of
different fields, so people with a reason to explore CA may
not have a technical background. Existing exploratory tools
for CA have significant barriers that make it hard for non-
technical users to explore CA as they might need. We have
built a visual programming language (VPL) and tool to allow
CA rulesets to be defined without textual programming and
with a visual approach supporting exploration.

Figure 1 depicts the Game of Life implemented in the
language. While our prototype is not intended for large-scale
or rigorous simulation, the language and interaction design
should be transferrable to larger systems. This prototype runs
in a commodity web browser, and is already sufficient for
initial exploration of a CA or experimenting with variations.

A. Goals

The design goals for our VPL were for the tool itself to be
readily accessible, and provide prompt feedback to support ex-
perimentation; for the language notation to be understandable
to non-technical users; and for the system not to require prior
knowledge of CA, but nonetheless to support rules of sufficient
complexity to allow defining a wide variety of well-established
CA including Conway’s Game of Life [1], Wireworld [2],
and Langton’s Ant [3]. Explicit non-goals were simulation

Fig. 1. Conway’s Game of Life implemented using our software.

Fig. 2. A very simple ruleset in our system: any white cell where exactly
one of the eight surrounding cells is black will become a black cell in the
next generation.

performance, world scale, compatibility with existing CA rule
formats, and non-2D automata.

II. LANGUAGE DESIGN

Programs (CA rulesets) in this language consist of a graph
of connected components describing the transformation that
should occur for particular groups of cells between one gener-
ation and the next, with different kinds of vertex contributing
different behaviour. Each component follows a “flow-chart”–
style model. A very simple ruleset is presented in Figure 2.
There are three kinds of node that appear in the program:

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
This is the author’s version of this paper, published in the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 10-14 August
2020, Dunedin, New Zealand. The final publication is available in IEEE Xplore via https://doi.org/10.1109/VL/HCC50065.2020.9127283.

https://doi.org/10.1109/VL/HCC50065.2020.9127283


Fig. 3. The first five generations of the ruleset from Figure 2.

Fig. 4. The first five generations of the ruleset from Figure 2, with a modified
asymmetric neighborhood.

a) Colour: (round, yellow): any cell of the specified
colour (here, white). At run time, execution starts for each cell
from a matching Colour node and follows the graph edges.

b) Condition: (rectangular, blue): a filter (here, exactly
one neighbouring cell is black). Execution continues in this
branch only if the condition is met. The green box to the
right allows specifying exactly which surrounding cells are
“neighbors” (shown/hidden with the arrow).

c) Action: (rectangular, red): a change of state (here, the
cell turns black). Alternatively, the action could affect selected
neighboring cells instead.

Colours and Conditions can have arbitrary out-degree, while
Conditions and Actions can have arbitrary in-degree. Condi-
tions can be connected in series for conjunction and in parallel
for disjunction by virtue of the “flow” style. Connections are
formed by dragging from the buttons on the edge of each node.

Execution of Figure 2 proceeds from each white cell in turn,
checking for exactly one black neighbour, and marking that
cell to turn black in the next generation. Figure 3 depicts the
first five generations, starting from a single cell, while Figure 4
shows experimenting with an asymmetric neighborhood in the
same ruleset, which is trivially accomplished in this system.
Figure 1 shows a more complex ruleset implementing Game
of Life, with two Colours and three Conditions.

Nodes can be added, removed, changed, or reconnected at
will, including “live” as the automaton is executing, to see the
effects of modifications immediately. The tool also supports
single-stepping the CA for more detailed inspection.

III. FUTURE WORK AND ALTERNATIVE DESIGNS

Our initial implementation (Figure 5) had two major dif-
ferences, which we removed following a preliminary user
experiment (approved VUW HEC). A Colour had multiple
“Property” outputs, representing itself, neighbours, and poten-
tially extra per-cell data, which could be connected separately.
A “Transform” node could manipulate data (for example,
refining or combining neighbour sets, adding numbers, or
performing logical operations). This model was more of a data-
flow than control-flow graph, but Transform nodes in particular
were highly confusing to users. Future work could incorporate
these functional elements better, supporting a wider range

Fig. 5. A Transform node in use to specify a restricted neighborhood to be
reused. The Colour node has two properties.

of automata. Ideally, all possible connections would have
meaning, which our initial design did not quite reach.

IV. IMPLEMENTATION

The tool is implemented to run in a web browser and avail-
able online at https://homepages.ecs.vuw.ac.nz/∼mwh/demos/
dm-vpl-ca/, using the Vue and jsPlumb libraries.

V. RELATED WORK

Existing CA tools with overlapping goals to ours include
the One-dimensional Cellular Automata Playground [4] and
Cellular Automata Laboratory [5] web-based tools, but neither
allows two-dimensional automata without standard program-
ming. Golly [6] is a popular CA simulation and experimental
tool, but its textual rule format is complex and internal or live
editing is not supported.

As a visual language our system most resembles LabVIEW,
and has particular design similarities in using domain-specific
visual notations [7]–[9], though we avoid using domain-
specific terms where possible. We also drew from Scratch [10]
in particular in its liveness and tinkerability, finding that
editing the program during execution is invaluable for exper-
imentation when uncertain about what will or should happen.

REFERENCES

[1] M. Gardner, “Mathematical games — the fantastic combinations of john
conway’s new solitaire game “life”,” Scientific American, vol. 223, no. 4,
pp. 120–123, 1970.

[2] A. K. Dewdney, “Computer recreations,” Scientific American, vol. 262,
no. 1, 1990.

[3] C. G. Langton, “Studying artificial life with cellular automata,” Physica
D: Nonlinear Phenomena, vol. 22, no. 1–3, pp. 120–149, 1986.

[4] A. Bell, “One-dimensional cellular automata playground,” https://albell.
github.io/cellular-automata-playground, 2018.

[5] R. Rucker and J. Walker, “Cellular automata laboratory,” https://www.
fourmilab.ch/cellab/webca/?show=demo, 2017.

[6] A. Trevorrow and T. Rokicki, “Golly,” https://golly.sourceforge.net/,
2018.

[7] E. Howard, “Visual programming: Concepts and implementations,”
Master’s thesis, Miami University, Ohio, 1994.

[8] M. Erwig and B. Meyer, “Heterogeneous visual languages—integrating
visual and textual programming,” in Proceedings of Symposium on
Visual Languages, 1995, pp. 318–325.

[9] M. Noone and A. Mooney, “Visual and textual programming languages:
A systematic review of the literature,” Journal of Computers in Educa-
tion, vol. 5, no. 2, pp. 149–174, 2018.

[10] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. M. a nd Eric Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009.

https://homepages.ecs.vuw.ac.nz/~mwh/demos/dm-vpl-ca/
https://homepages.ecs.vuw.ac.nz/~mwh/demos/dm-vpl-ca/
https://albell.github.io/cellular-automata-playground
https://albell.github.io/cellular-automata-playground
https://www.fourmilab.ch/cellab/webca/?show=demo
https://www.fourmilab.ch/cellab/webca/?show=demo
https://golly.sourceforge.net/

	Introduction
	Goals

	Language design
	Future Work and Alternative Designs
	Implementation
	Related Work
	References

