
Co-located Collaborative Block-Based Programming
Ben Selwyn-Smith, Craig Anslow, Michael Homer

School of Engineering and Computer Science
Victoria University of Wellington

Wellington, New Zealand
Email: {selwynbenj,craig,mwh}@ecs.vuw.ac.nz

James R. Wallace
School of Public Health and Health Systems

University of Waterloo
Waterloo, Ontario, Canada

Email: james.wallace@uwaterloo.ca

(a) Multiple users interacting on three de-
vices separately: tablet, laptop, & tabletop.

(b) Multiple users interacting on Tabletop
Grace in different workspaces.

(c) Mobile Grace on a tablet and Tabletop
Grace with blocks being shared.

Fig. 1: Multi-Device Grace: multiple novice programmers simultaneously working together on different devices (laptop, mobile
tablet, and digital tabletop) within different independent workspaces to develop a new blocks-based program.

Abstract—With the increasing need to teach programming
to novices using collaborative methods like pair programming,
it is important to understand how different input devices can
help support collaborative learning. In this paper we present
Multi-Device Grace, the first application to explore block-based
programming in a cross-device environment consisting of digital
tabletops, mobile tablets, and laptops. We conducted a user
study (n = 18) to explore how cross-device environments can
support co-located collaborative block-based programming. The
study used Tiled Grace, an existing block-based programming
language, and our extensions: Tabletop Grace (designed for
tabletops) and Mobile Grace (designed for tablets). Our results
show that the majority of participants felt they were able to
collaborate quickly and easily, and the cross device interaction
would be particularly beneficial in an education setting.

Index Terms—Block-Based Programming, Collaboration,
Cross Device Interaction, Tabletop, Mobile

I. INTRODUCTION

Many of today’s classrooms teach programming using
block-based languages (e.g. Scratch [43]), where programs
are composed of visual blocks that can be built, shared, and
experimented with easily. Block-based languages are effec-
tive in encouraging engagement, storytelling, and exploratory
programming [18], [38]. They are also highly collaborative,
and instructors largely take advantage of “pair programming”

approaches to learning. Advances in these programming lan-
guages have not been accompanied by more collaborative
hardware. Block-based programming languages are typically
taught on PCs (mouse and keyboard) or laptops, but provide
little support for building, sharing, and experimenting with
blocks in a co-located collaborative environment.

Cross-device techniques (with multiple devices) offer a
compelling solution to support co-located collaborative envi-
ronments [30]. Digital tabletops have been shown to foster
collaboration between multiple users [14], who can work on
different tasks on different parts of the table simultaneously,
or work side by side on the same task together, split out, bring
together, and share elements in ad-hoc collaboration. Personal
laptops and tablets provide a safe environment where individ-
uals can work on problems before sharing their solutions with
others. Block-based languages also lend themselves to touch-
based interaction, due to their visual and physical nature.

Our research goal is to explore how cross-device interaction
can support students learning to program in a collaborative
environment with block-based programming languages, using
tabletops, tablets, and laptop computers. We describe Multi-
Device Grace our block-based programming environment
which involves new techniques we designed, Tabletop Grace
for digital tabletops [45], Mobile Grace for mobile tablets,
and the original Tiled Grace [25], [26], [27] for desktops (see

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
This is the author’s version of this paper, published in the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), October 14–18 2019, Memphis, TN, USA. The final publication is available in IEEE Xplore via
https://doi.org/10.1109/VLHCC.2019.8818895

https://doi.org/10.1109/VLHCC.2019.8818895

Figure 1). Tabletop Grace and Mobile Grace extended Tiled
Grace to support different interaction modes (touch and pen).
We discuss the differences in the design of the tabletop and
mobile versions, outline the methods used for cross device
interaction between Tabletop Grace, Mobile Grace, and Tiled
Grace, and evaluate the cross device functionality via a user
study. Figure 1 shows novice users collaborating both across
the three device types, and simultaneously on the tabletop.

The remainder of the paper is outlined as follows. Section
II addresses related work. Section III presents Multi-Device
Grace and addresses various points in the design space we
have explored. Section IV describes our user study design
and Section V presents the results. Section VI discusses the
main contributions of our work and Section VII concludes and
summarizes our contributions.

II. RELATED WORK

Most block programming systems are designed for use in
traditional keyboard-and-mouse environments and run in a
web browser. Users construct programs by dragging blocks
with the mouse from a toolbox area onto the workspace.
Squeak Etoys [34], Scratch [43], Blockly [8], Pencil Code [4],
GP [40], Calico Jigsaw [7], and Tiled Grace [25], [26], [27]
based on the textual Grace programming language [5], [6] all
have drag-and-drop as a fundamental element of their inter-
action model, with screen elements designed for traditional
Windows, Icons, Menus, and Pointer (WIMP) interfaces.

Drag-and-drop is a problematic paradigm on traditional
keyboard-and-mouse systems, both in general [20], [31], [37]
and for block programming [26]. On a mobile touch-screen
device, dragging appears more seamless than dragging with
a mouse, but the additional occlusion of the finger and hand,
and the poor resolution of a fingertip (i.e., ‘fat fingers’), lead
to inaccurate interactions if the touch targets are not large
and unambiguous. On a tabletop, however, a drag “across the
screen” requires a whole-arm movement or more. For rare
interactions, this may be acceptable, but repeated large move-
ments, or requiring finesse and precision are not viable [48].

Some block-based languages have targeted touch-screen
devices, primarily tablets, including Hopscotch [28], TouchDe-
velop [29], Blockly [8], App Inventor [50], Pocket Code [46],
and Snap! [21]. TouchDevelop has touch-screen programming
as its main interaction model, providing a point-and-tap struc-
tured editor with menus and large touchable areas. Hopscotch
allows coding on iPad tablets only, and has a similar inter-
action model to TouchDevelop, but aimed at children. App
Inventor deploys only onto touch-screen devices, but users
create programs on a mouse and keyboard system. Pocket
Code uses a single stack-like collection of screen width blocks
that is better suited to the smaller screen space of smartphones.

Most block-based languages support some form of asyn-
chronous project sharing, which takes the form of sharing
previously created programs with other users who can then
make their own changes. A few languages have added support
for synchronous collaboration, including AliCe-VilLagE [1],
NetsBlox [10], [11], and an App Inventor plugin [16], [17].

AliCe-VilLagE, an extension of Alice, allows users to remotely
contribute to the same project, with built-in remote chat and
video conferencing options. NetsBlox, an extension of Snap!,
implements the Google Docs collaboration style and addition-
ally provides networking features for created applications. The
App Inventor plugin enables synchronous collaboration in a
similar manner to NetsBlox.

Tabletop devices and interactive surfaces are well known to
enhance collaboration in many domains [2], such as visualiza-
tion [32], [35] and software development [3], [9], [19], [36],
[49]. Isenberg et al. [32] highlighted the use of tabletops in
open-ended information foraging tasks, where multiple users
could examine, annotate, and share documents with similarity
linking to other users, while Kim et al. [35] described similar
techniques for mixed physical-virtual collaboration between
many users. SourceVis [3] used a tabletop where users could
work together, separately, and come back together while
working on the same broad task of analysing software through
visualizations. Wang et al. [49] and Ghanam et al. [19] ex-
plored the potential for digital tabletops to replace typical ag-
ile programming meetings, using planning software designed
specifically for large tabletop displays. aWall [36] extends
these designs to large vertical display walls. CodeSpace [9]
adapted the CodeBubbles IDE to touch devices to support
software development team meetings, but used a vertical touch
screen. These studies show the benefits of tabletops as a single,
shared surface around which groups can often collaborate
more efficiently and effectively than a traditional desktop PC.

Cross device interaction has been gaining popularity steadily
in recent years, where individuals take advantage of both
shared (i.e., tabletop, wall displays [30]) and personal devices,
such as tablets, mobiles, and devices with larger screens when
collaborating. Some noteworthy applications of cross device
interaction include: HuddleLamp [42], which allows users to
combine tablets for collaboration across a physical table, in
an ad-hoc fashion, using a lamp-mounted camera to track
devices and hands. CurationSpace [13] allows users to change
their interaction method within a shared space through the
use of smart watches. SurfaceConstellations [39] is a tool
that facilitates multi-monitor and multi-surface environments.
Users can adjust the placement of their screens or devices
within the software, and then 3D print brackets that will
allow the screens or devices to be placed in the user defined
positions. VisPorter [15] is a tool designed for collaborative
exploration of text documents using multiple devices, and
spatially related gestures for collaboration.

To understand the benefits of both shared and personal
devices, the research community has performed analyses of
group work patterns, called coupling styles [47], during col-
laborative work. It has been shown that technologies that
support a variety of coupling styles, including Discussion,
use of Personal Device, and collaboration around a Shared
Device, ultimately reduce the effort required to collaborate,
and improve collaborative outcomes. In this work, we show
that these benefits translate directly to cross-device, co-located
collaborative block-based programming.

2

III. COLLABORATIVE MULTI-DEVICE GRACE

To facilitate cross device block-based programming we have
developed Multi-Device Grace, which is a block program-
ming application for use on a large tabletop called Tabletop
Grace [45] which extends Tiled Grace [25], [26], [27], and
Mobile Grace a modification of Tabletop Grace, designed
for tablets. Multi-Device Grace is illustrated in Figure 1,
with multiple users engaged in editing block-based programs
on the same digital tabletop, and across multiple devices.
Tabletop Grace has been deployed on a Promethean ActivTable
(1920×1080 resolution, 46-inch display, supporting 32 simul-
taneous touches), and Mobile Grace has been deployed on a
Samsung Galaxy Tab S3 (9.7 inch). This paper is based upon
some preliminary work on Tabletop Grace that was presented
in a non-peer reviewed workshop [45]. We now discuss the
design features of each of the Multi-Device Grace components.

A. Cross Device Collaboration

In Multi-Device Grace, users can send tiles from their own
device to another device connected to the same device group.
In this way users are able to share any of their tiles, from small
snippets, to complete programs. Multi-Device Grace does not
support any real time collaboration (e.g. Google Docs style
shared workspace), but instead allows users to work on their
own project and share as needed. We believe this functionality
allows for greater flexibility in how Multi-Device Grace can
be used, and this design decision was based on our vision of
Multi-Device Grace usage in an educational setting. Such a
setting would allow students to focus individually on a given
task, using a single user device, whilst being able to share
snippets for bug fixing, idea demonstration or other purposes
with their peers. Students would also be able to work together
more closely by using the tabletop version, where multiple
students can code in the same area, whilst still allowing
individuals to break away and work on smaller tasks on their
own single user device as needed. Lastly, the ability to send
complete programs to other devices would allow for students
to demonstrate their completed program by sending their work
to a tabletop or large wall display visible by all involved.

B. Tabletop Grace

Tabletop Grace enables multiple users to work simultane-
ously, with both in-person and computerised interaction. To
avoid contention for the same area, each user can create
their own independent, re-orientable, resizeable workspace,
depicted in Figure 2. Users may work on different parts of
the program in a separate area of the table (for example,
one end each) and then combine, or share the programs with
each other. Users may also work in the same workspace,
as long as they remain on the same edge of the table, as
orientation to each of the table edges is only adjustable per
workspace. Users can reorient workspaces in any direction to
share their current code with any other user at the table. The
workspaces are separate Grace modules [23] that can be run
and tested individually, but any block, or group of blocks,
can be sent to another workspace through the menu that is

displayed by tapping that block, including to a workspace that
is not currently displayed, and code reuse (or inheritance [33])
is possible between workspaces, by sharing previously defined
methods and objects. A complete program can be built in parts
and assembled within a shared workspace. Each workspace
is loaded through a semi-circle shaped blocks window menu
displayed from the table edge. In Tabletop Grace we opted
to restrict workspace positioning to the four edges of the
tabletop shown in Figure 2, with active workspaces equally
sharing all of the available space. This is a trade-off between
maximal usage of screen space versus increased flexibility
in user positioning. Workspaces have a fixed scale, but are
individually scrollable to an infinite area. Full or partial
zooming is possible, though scaling items to be feasible touch
targets can be difficult.

C. Floating Pie Menus

Menus in Tabletop Grace and Mobile Grace use a different
system compared to Tiled Grace, due to using touch input
instead. For the Tabletop, the use of statically located UI
elements is not feasible due to the average distance a user
needs to reach [48], and the possibility of physical contention
in a multi-user scenario, while for Mobile Grace, screen space
is a premium and much of the screen space would be lost to UI
elements using the interface of Tiled Grace. For these reasons
we implemented a multi-layer pie menu, seen in Figure 2
(denoted as label i), which can be revealed in-situ via a
short press. Like Tiled Grace, the currently available tiles in
this tile pie menu change based on the current dialect [24].
Multiple tiles can be created by dragging a block out of the
pie menu (rather than tapping), leaving the menu open to
be used again. A long press on a block creates a pie menu
with deletion, copy, and workspace transfer operations. Each
operation applies to an entire nested block structure. A pie
menu for global program options, such as running, saving,
changing dialects, switching to text view, and overlaying
errors [26], is available with a two-finger tap and seen in the
second (upright) workspace of Figure 2 (denoted as label ii).

D. Manipulating Blocks

Tiled Grace relies on dragging blocks to join them together
or separate them. Frequent or long drags of blocks on tabletops
is problematic. To improve the accuracy of tile manipulation
using touch, we ensured that every tile is at least as large as
a finger-tip. For Multi-Device Grace, we added the ability for
users to select multiple tiles at once by using a lasso gesture
which works by pressing and dragging on the background of a
workspace and lassoing the tiles. When selected in this manner
tiles can be grouped together (vertically stacked), or collapsed
down to the topmost block of a stack for reduced screen clutter.
Subgroups of blocks in a larger block can also be selected.

E. Text Input

Some parts of programs require text to be written by the
user, such as defining the name of a variable or method, or the
value of a string. In Mobile Grace this is facilitated by using

3

Fig. 2: Multi-Device Grace tile features. Four active workspaces displayed in different orientations showing different Tabletop
Grace programs. From left to right: 90◦ clockwise, 0◦, 180◦, 90◦ counter-clockwise. Each workspace is loaded by the semi-
circle shaped Blocks Window menu as displayed in the left most workspace. Label i) demonstrates the tile selection pie menu.
Label ii) highlights the Global Program Options Menu. Only Tabletop Grace supports multiples workspaces.

the built-in soft keyboard. In Tabletop Grace we implemented
our own multiple soft keyboards system, where each field can
have a separate keyboard. The operating system soft keyboard
can also be used but is only focused on a single field.

F. Mobile Grace

Mobile Grace shares the same interaction method as Table-
top Grace, but the smaller screen size required some changes.
Multi finger operations were infeasible, largely due to the in-
creased pointer size when using fingers. Instead we redesigned
operations that rely on multi finger input, to require only a
single finger. This lead to two-finger presses becoming a press
and hold operation, and two-finger drag operations becoming a
single finger drag with a UI button for toggling command type.
The addition of a stylus improved the interaction accuracy.

G. Cross Device Communication

Cross device interaction is achieved using a Node JavaScript
server, which acts as an intermediary for instances of the
software. Communication between clients and the server is
done using the WebSockets protocol. When clients are con-
nected to the server, they can send updates to other devices,
allowing every instance to remain up to date. To send tiles
to another device, the desired tiles must be selected, and
then the appropriate target device(s) (single or all) is selected
through the global menu. Tiles can be sent with or without

acceptance to another device, and a visual notification is given
regardless. Tiles can be sent to specific active workspaces on
the Tabletop. Tiles appear in the same XY position as where
they are sent from. To stop communication a device needs to
end the connection and stop broadcasting.

IV. USER STUDY

To evaluate the effectiveness of Multi-Device Grace (com-
prising of Tabletop Grace, Mobile Grace, and Tiled Grace)
when used for cross device collaborative programming we
conducted a user study. We received human ethics approval.

A. Design

To guide the design of our user study, we started off with
a few key aspects that we wanted to consider. We wanted to
observe how participants made use of the cross device features
of Multi-Device Grace, and to record their subjective opinions.
We wanted to measure the usability of Multi-Device Grace on
a tabletop and mobile, and compare it with the baseline Tiled
Grace on a laptop. To measure cross device collaboration we
recorded the coupling styles participants used, where coupling
styles refer to the way in which participants work together,
based on the coupling styles defined by Tang et al. [47]
but applied to a multi-device setting. From these aspects we
decided upon three research questions:

4

RQ1 How effective is each device in a co-located cross
device collaborative programming setting?

RQ2 How do participants collaborate when using Multi-
Device Grace?

RQ3 How would the cross device functionality be effective
in an education scenario?

B. Participants

We recruited a total of 18 participants (M = 16, F = 2) from
our university, working in groups of three, for a total of 6
individual sessions. Participants that completed the user study
were given a $10 gift voucher honorarium. All participants had
experience with textual programming languages, while 72%
had experience with block-based programming languages. The
textual and block languages that participants had the most prior
experience with were mainly Java and Scratch (see Figures 3a
and 3b). The minimum age of participants was 21, maximum
28, and mean 22.6.

C. Procedure

User studies took place in a room containing the tabletop
next to a desk, with space for a laptop (including external
mouse and keyboard) for running Tiled Grace, and a tablet
(with stylus) for running Mobile Grace. All three devices ran
the software in the Google Chrome Web browser.

Participants were given information sheets and asked to
sign consent forms before participating. Before starting the
study, after using each device, and at the end of the study,
participants were asked to fill in parts of a questionnaire.
Participants were given a short tutorial using a simple sample
program, to explain how to use each of the three systems
before starting the tasks. We used within subject testing [41],
with each participant being assigned a different device for each
task and switching device for subsequent tasks. Participants
were given 30 minutes maximum to complete all tasks. After
completing all the tasks the final sections of the questionnaire
were completed by participants.

We used four coupling styles designed to measure loose
and tightly coupled scenarios based on those defined by Tang
et al. [47]: Discussion (DISC), where participants engage in
discussion about the task; Personal Device (PD), where each
participant is working on the device they have been assigned
to; Same Device 2 participants (SD2), where two participants
are engaged on the same device and the third is working on a
different device; Same Device 3 participants (SD3), where all
participants are working together on the same device. PD, SD2
and SD3 represent a scale for coupling categories, with PD
equating to the most loosely coupled, SD2 being more tightly
coupled, and SD3 being the most tightly coupled category.

D. Study Tasks

Participants were given three tasks to complete (Appendix
D). The tasks relied upon a Grace dialect and sample code that
allows for line and circle drawing. Participants were advised
to split the workload of each task evenly between themselves.
When a task was completed or time limit reached, participants

(a) Textual programming languages.

(b) Block-based programming languages.

Fig. 3: Programming language experience (textual and block-
based) as reported by participants.

were instructed to send the results to the tabletop, combine the
individual parts, and run the final version. Participants were
limited to 10 minutes for each of the three tasks. Participants
that finished early moved onto the next task. The set of tasks
participants were asked to complete were:

1) Correctly draw shapes that match a provided template.
Participants had different starting blocks, and had to
send tiles to match up methods, and fix intentional bugs.

2) Draw the letters for ”Hello World” using a provided
line drawing method. Participants were given a faded
template to draw over, and provided with positions and
dimensions.

3) Design a simple program, distribute the workload, and
create the program.

E. Data Collection

Each participant completed a questionnaire containing ques-
tions about their background in terms of relevant knowledge
(Appendix A). To measure opinions on system usage we used
the System Usability Scale (SUS) [12] for all three systems
(Appendix B). The final section of the questionnaire contained
several free-form questions, which asked participants about the
advantages and disadvantages of sending tiles, their opinions
on an example usage scenario, and their thoughts on the
usefulness of the cross device functionality (Appendix C).
Each user study was recorded using a video camera, and screen
capturing software on each device.

5

V. RESULTS

We now report on the findings from the user study by
addressing each of the research questions.

A. RQ1 – How effective is each device in a co-located cross
device collaborative programming setting?

Participants responded to SUS questions through a 5-
point Likert scale ranging from 1 “Strongly Disagree”, to 5
“Strongly Agree”, for each of the 10 questions. Box plots of
the SUS results for each system are shown in Figure 4. Results
show that participants favoured the tablet system over the other
two devices. Some participants mentioned that they believed
the laptop system to be problematic due to the differences
between the user interfaces, namely pie menus versus statically
located menus. Despite this, the SUS scores for all three
systems were very similar, indicating that this was not a
significant problem. Participants also reported that the ability
to combine and display programs on the larger tabletop screen
was particularly valuable, giving the tabletop a clear role.

Responses to the SUS questions highlight a number of
points. The laptop system scored highest in terms of likeability,
ease of use, and design quality, but participants’ responses
indicate that the laptop system was also the most inconsistent,
hardest to learn, and had the most usability hurdles. The
tabletop and tablet systems scored quite similarly across all
questions. Two clear differences between these can be seen,
firstly in terms of ease of learning, where the tabletop scored
highest out of the three platforms, and secondly assistance
requirement, where the tablet was reported as being the system
that participants would be happiest using without assistance.

Overall, the responses for the SUS questions can be com-
bined into a single value that represents the overall usability
of the system as perceived by the user study participants. For
our user study the overall scores were 64.3, 64.7 and 65.3
for the tabletop, laptop, and mobile devices respectively. SUS
research shows that a score of 68 is considered average for
usability [44], indicating that participants felt each system was
slightly below average in terms of usability. That all three
systems received fairly similar scores indicates that the user
interface we designed and implemented for the tabletop and
tablet versions is as usable as the user interface of Tiled Grace,
with Mobile Grace being the preferred system by a small
margin over the others.

The first of the questions in the freeform questions of the
questionnaire prompted participants to rank the three systems
in terms of effectiveness. Responses for this question were
tallied to create an overall score for each system, where
ranking a system in first place counted as 2 points, second
place 1 point, and third place 0 points. The responses to this
question show that overall, participants preferred working on
the tablet system with 21 points, then the tabletop with 18
points, and lastly the laptop with 15 points.

Participants were also asked to specify advantages and
disadvantages of the ability to send tiles between systems.
Responses to this question that were reported by at least two
participants can be seen in Figures 5a and 5b. The most

Fig. 4: System Usability Scale data using 5 point Likert scale.
Red: Tabletop, Green: Laptop, Blue: Mobile.

common advantages voiced by the participants were that cross
device tile sending makes collaboration easy, fast and fun, as
well as allowing the workload to be split easily. The main
reported disadvantages were that there was no limit on tile
sending, it was hard to remember the names of devices, and
that sent tiles can’t be updated without re-sending them.

The last question in the freeform questions asked partici-
pants if they thought the cross device functionality provided
by Multi-Device Graces was useful for collaborative program-
ming. 17 out of 18 (94%) participants answered affirmative for
this question. The most commonly reported reasons in order
of number of responses were: it was easy to combine parts of
a program into a final version and view the results; users of
such a system can use whichever device suits them best, based
on preference or current activity; work can easily be split up
into smaller parts and distributed among a group; and small
snippets of code can easily be shared.

B. RQ2 – How do participants collaborate when using Multi-
Device Grace?

During our user study we recorded participants making use
of the three devices to work together, split apart, and reconvene
as required. We coded the amount of time each group spent in
the different coupling styles so we could compare and contrast
the different styles. Participants spent the largest portion of
their time in the personal device coupling style, the most
loosely based coupling style measured. Participants were able
to switch to more tightly coupled styles when needed for
seeking and providing assistance, discussing progress, and
combining individual work into a completed program.

Due to the nature of the tasks provided to participants,
all groups spent some time at the start of each task in
the discussion coupling style. This involved dividing up the

6

(a) Advantages of cross device tile sending.

(b) Disadvantages of cross device tile sending.

Fig. 5: Participants’ responses from the final questionnaire:
opinions on the advantages and disadvantages of cross device
tile sending, reported from at least 2 participants.

task into equal parts and deciding who would do which
part. The amount of time spent in this coupling style varied
between groups and between tasks with task 3 requiring more
discussion on average, and task 2 the least amount. Groups
then moved onto the Personal Device (PD) coupling style to
start work on their part of the group task. During this time
groups would often temporarily enter into the Shared Device
2 or 3 (SD2, SD3) coupling style, before reverting back to
PD. Reasons for entering into SD2 or SD3 often included:
additional task deliberation, and progress reports. Participants
that were unsure how to proceed or conversely had finished
their part early also made use of SD2 or SD3 in a support
requesting or support providing role. A few groups opted to
perform more rigorous planning using paper or whiteboards,
which was common for task 3, where participants had to
implement a program of their own choosing.

Overall, participants spent the largest amount of time (64%)
in the PD coupling style, which involved completing their
portion of the assigned task. The second most commonly used
style was discussion (15%), and then SD2 (13%). The least
commonly used coupling style was SD3 (7%). These results
are shown in Table I. Breaking down the results by task shows
that task 2 required the least amount of communication and
also involved no SD3 coupling. This is likely due to the task
being easier to split up and groups running out of time to test
the final program on the tabletop using the SD3 coupling style.
While task 3 involved more discussion as groups had to agree

TABLE I: The amount of time participants spent in each
coupling style, grouped by task. Coupling Styles: Discussion,
Personal Device, Same Device 2, Same Device 3.

D PD SD2 SD3
Task 1 13.42% 59.14% 13.92% 13.53%
Task 2 6.94% 87.17% 5.89% 0.00%
Task 3 24.94% 46.94% 20.58% 7.53%
Total 15.10% 64.42% 13.46% 7.02%

upon a program to implement before dividing up the task, it
also involved considerably less SD3 time than task 1.

C. RQ3 – Would the cross device functionality be useful in an
education scenario?

The third question of the final section of the questionnaire,
asked participants to provide their opinion of the potential for
Multi-Device Grace to be used in a classroom environment for
teaching purposes. 16 out of 18 (89%) participants responded
that they believe this application would be beneficial for a
classroom environment, with the most common reasons being:
it made for fun and enjoyable group learning; it provided a
tangible, visual, hands on experience; it provides the ability to
distribute lessons or examples to other devices; and the appli-
cation was easy to learn. These reasons favour an educational
setting because the potential of Multi-Device Grace provides
quick and easy collaboration methods which can help facilitate
a fun group learning scenario.

VI. DISCUSSION

We now discuss the more important aspects from our results,
most notably cross device collaboration and designing block-
based environments for touch surfaces.

A. Block-Based Cross Device Collaboration

The most important finding from our research in terms of
block-based collaboration, was that the cross device function-
ality provided by our software for Tabletop Grace, Mobile
Grace, and our modified version of the original Tiled Grace,
was considered to be beneficial for collaboration by 94% of
the participants. Participants reported that the ability to break
apart programming tasks into smaller sub tasks that can be
distributed amongst a group quickly and easily, worked on
separately in a user’s preferred device, and finally recombined
into a finished program on a single device, was very useful
for collaboration. 89% of participants responded affirmatively
about the potential use of Multi-Device Grace in classrooms.

The cross-device functionality also supported a variety of
coupling styles, though we found that most of our participants
followed a set pattern when completing tasks, where they
discussed the problem, shifted to personal device usage with
sporadic same device 2 (SD2) phases, and finally completed
the task together via same device 3 (SD3). These patterns
are consistent with the literature surrounding cross-device
collaboration (e.g., Homaeian et. al [22]), and show support
for the flexibility required to effectively and efficiently solve
complex tasks as a group. For example, participants chose

7

to make heavier use of SD2 when assisting group members
that were stuck. The cross device functionality, affords users
a large amount of flexibility in how they approach problems,
and support for both individual and collaborative sub-tasks.

Houben et al. [30] describe seven opportunities and chal-
lenges based on the proceedings of the Cross-Surface work-
shops. We address some of these opportunities and challenges.
The first of these is enabling easy configuration of device
ecologies. In terms of discovering other devices, Multi-Device
Grace allows all devices to easily connect to a central server
and communicate with other connected devices, at the press
of a button. While disabled for our user study, Multi-Device
Grace can allow users to join user defined groups, preventing
communication to non grouped devices. The second point
raised is designing for scale and interoperability. Each system
in the Multi-Device Grace group, runs in a web browser,
requiring no extra software installation as long as an up-to-
date browser is used. This allows users to share tiles between
any set of devices that support a modern web browser. Fur-
thermore, Multi-Device Grace provides software designed for
three common device types: Mouse and Keyboard computers,
large touch screen devices, and mobile tablet devices. Another
issue raised is addressing cross-device interaction challenges.
The user interface for each system in Multi-Device Grace,
differs to match the device it is designed for, however the
process of sending tiles between devices, follows the same
process on each system: select tiles, go to connection menu,
and send to target device(s). The on screen appearance of the
connection menu is also kept the same across each system,
which helps to keep the cross device interaction process as
simple as possible.

B. Designing Touch Enabled Blocks-Based Environments

Overall, based on the responses received for the SUS ques-
tions, participants considered the laptop, tablet, and tabletop
systems to be almost equivalent in terms of usability. We found
this result to be particularly interesting, as all our participants
had extensive mouse and keyboard experience, suggesting that
the more familiar WIMP style interface would receive a no-
ticeably higher score than the less familiar tablet and tabletop
interfaces. In addition, the SUS scores and participant reported
device rankings do not match up. While the tablet system
was ranked highest in effectiveness and SUS, the tabletop and
laptop systems were placed differently in both. We believe
that the tabletop provides a novel interface that allows users to
have a more enjoyable collaborative programming experience,
despite a marginally perceived weaker user interface.

One of the key features of Tiled Grace is the ability to
transition from a block-based view to a direct textual equiva-
lent. On the touch surface devices this feature was less useful,
due to keyboards being harder to use, with physical keyboards
being awkward to position and potentially disrupting other
users, and soft keyboards suffering due to the issues with
text input and focus. Generally, this points to taking a simpler
approach better suited for novices, with more focus on the
blocks themselves than the textual representation. The tile pie

menu noticeably reduced time spent dragging blocks around
the screen, as the menu could be brought up in close proximity
to where participants wanted new blocks. During the user
study, we noticed a few participants trying to call up a tile
menu directly in the hole they wished to place new blocks,
which we hadn’t considered implementing. This could be a
more efficient strategy for creating and adding new blocks.

Limitations. There were some limitations with our study. We
conducted our study in a controlled lab and with a convenience
sample within the same geographical region. As we conducted
a qualitative study with 18 participants we were not concerned
with errors made or time taken to perform the tasks. We did
not compare with other textual based languages or other block
based languages as we see this as future work.

Future Work. Based on feedback we believe that further
testing the potential of Multi-Device Grace in the wild in
an educational classroom setting would be of value. With
introductory programming being introduced earlier and earlier
in schools, performing a longitudinal study of the effectiveness
of such a learning method, could help guide design decisions
and ultimately increase interest in programming for young
people. We would also like to do comparative studies to find
out how effective collaborative blocks based programming is
with multiple devices compared with solely a textual based
language, blocks on a single device, and remote collaboration.

VII. CONCLUSION

As teaching programming to novices becomes more preva-
lent and widespread, which is often happening in pairs and
groups of people, there is a need to support different methods
for collaborative programming. In this paper we presented
Multi-Device Grace, our vision for co-located cross device
block-based programming, using a mouse and keyboard com-
puter, mobile tablet, a digital tabletop, and modifications to an
existing block-based programming language Tiled Grace [25],
[26], [27]. Multi-Device Grace allows multiple users to work
together in their own workspace, remotely via cross device
communication, and on the device that is most suitable for
their current situation.

We evaluated Multi-Device Grace through a user study
(n=18, within subjects testing). Results showed that Multi-
Device Grace with our block-based interface modifications for
a digital tabletop and mobile tablet were equivalently usable as
the traditional mouse and keyboard interaction method. Nearly
all participants (94%) found the cross device functionality of
Multi-Device Grace, to be valuable for collaboration, due to
the ability to split tasks apart, work on them separately across
multiple devices, and recombine the final program easily. Of
the three systems we tested, participants reported that they
preferred the tablet version, in terms of effectiveness through
a system ranking and usability through the System Usability
Scale questions. Our aim is to see introductory programming
courses in high schools adopt new styles of interfaces to help
aid collaborative programming and we believe Multi-Device
Grace is an effective design for this activity.

8

VIII. ACKNOWLEDGEMENTS

We thank all the participants who volunteered for the user
study. We thank the members from the Grace programming
language community for the valuable discussions regarding
the design of Multi-Device Grace and user study including
James Noble, Andrew Black, Kim Bruce, and Tim Jones.

REFERENCES

[1] Ahmad Al-Jarrah and Enrico Pontelli. ”AliCe-ViLlagE” Alice as a
Collaborative Virtual Learning Environment. In Frontiers in Education
Conference (FIE), 2014, pages 1–9. IEEE, 2014.

[2] Craig Anslow, Pedro Campos, and Joaquim Jorge, editors. Collaboration
Meets Interactive Spaces. Springer, 2016.

[3] Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. Source-
vis: Collaborative software visualization for co-located environments.
In Proc. of International Working Conference on Software Visualization
(VISSOFT), pages 1–10. IEEE, 2013.

[4] David Bau, D. Anthony Bau, Mathew Dawson, and C. Sydney Pickens.
Pencil Code: Block code for a text world. In Proc. of International
Conference on Interaction Design and Children (IDC), pages 445–448.
ACM, 2015.

[5] Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble.
Grace: The absence of (inessential) difficulty. In Proc. of International
Symposium on New Ideas in Programming and Reflections on Software
(Onward!), pages 85–98. ACM, 2012.

[6] Andrew P. Black, Kim B. Bruce, Michael Homer, James Noble, Amy
Ruskin, and Richard Yannow. Seeking Grace: a new object-oriented
language for novices. In Proc. of SIGCSE, pages 129–134. ACM, 2013.

[7] Douglas Blank, Jennifer S. Kay, James B. Marshall, Keith O’Hara,
and Mark Russo. Calico: A multi-programming-language, multi-context
framework designed for computer science education. In Proc. of
SIGCSE, pages 63–68. ACM, 2012.

[8] Blockly Project. Blockly web site. https://code.google.com/p/blockly/,
2011.

[9] Andrew Bragdon, Rob DeLine, Ken Hinckley, and Meredith Ringel
Morris. Code space: Touch + air gesture hybrid interactions for
supporting developer meetings. In Proc. of Interactive Tabletops and
Surfaces (ITS), pages 212–221. ACM, 2011.

[10] Brian Broll and Akos Ledeczi. Distributed Programming with NetsBlox
is a Snap! In Proc. of SIGCSE, pages 640–640. ACM, 2017.

[11] Brian Broll, Akos Lédeczi, Peter Volgyesi, Janos Sallai, Miklos Maroti,
Alexia Carrillo, Stephanie L. Weeden-Wright, Chris Vanags, Joshua D.
Swartz, and Melvin Lu. A visual programming environment for learning
distributed programming. In Proc. of SIGCSE, pages 81–86. ACM, 2017.

[12] John Brooke et al. SUS-A quick and dirty usability scale. Usability
evaluation in industry, 189(194):4–7, 1996.

[13] Frederik Brudy, Steven Houben, Nicolai Marquardt, and Yvonne Rogers.
Curationspace: Cross-device content curation using instrumental inter-
action. In Proc. of International Conference on Interactive Surfaces and
Spaces (ISS), pages 159–168. ACM, 2016.

[14] Stéphanie Buisine, Guillaume Besacier, Améziane Aoussat, and Frédéric
Vernier. How do interactive tabletop systems influence collaboration?
Computers in human behavior, 28(1):49–59, 2012.

[15] Haeyong Chung, Chris North, Jessica Zeitz Self, Sharon Chu, and Fran-
cis Quek. Visporter: facilitating information sharing for collaborative
sensemaking on multiple displays. Personal and Ubiquitous Computing,
18(5):1169–1186, 2014.

[16] Xinyue Deng. Group collaboration with app inventor. Master’s thesis,
Massachusetts Institute of Technology, 2017.

[17] Xinyue Deng and Evan W Patton. Enabling multi-user computational
thinking with collaborative blocks programming in MIT app inventor.
Siu-cheung KONG The Education University of Hong Kong, Hong Kong,
page 168, 2017.

[18] Diana Franklin, Phillip Conrad, Bryce Boe, Katy Nilsen, Charlotte Hill,
Michelle Len, Greg Dreschler, Gerardo Aldana, Paulo Almeida-Tanaka,
Brynn Kiefer, et al. Assessment of computer science learning in a
scratch-based outreach program. In Proc. of SIGCSE, pages 371–376.
ACM, 2013.

[19] Yaser Ghanam, Xin Wang, and Frank Maurer. Utilizing digital tabletops
in collocated agile planning meetings. In Proc. of AGILE, pages 51–62.
IEEE, 2008.

[20] Douglas J. Gillan, Kritina Holden, Susan Adam, Marianne Rudisill, and
Laura Magee. How does Fitts’ law fit pointing and dragging? In Proc.
of CHI, pages 227–234. ACM, 1990.

[21] Brian Harvey and Jens Mönig. Bringing “no ceiling” to Scratch:
Can one language serve kids and computer scientists? In Proc. of
Constructionism, 2010.

[22] Leila Homaeian, Nippun Goyal, James R. Wallace, and Stacey D. Scott.
Group vs individual: Impact of touch and tilt cross-device interactions
on mixed-focus collaboration. In Proc. of CHI, pages 73:1–73:13. ACM,
2018.

[23] Michael Homer, Kim B. Bruce, James Noble, and Andrew P. Black.
Modules as gradually-typed objects. In Proc. of Workshop on Dynamic
Languages (DYLA). ACM, 2013.

[24] Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and
Andrew P. Black. Graceful dialects. In Proc. of European Conference
on Object-Oriented Programming (ECOOP), pages 131–156. Springer,
2014.

[25] Michael Homer and James Noble. A tile-based editor for a textual
programming language. In Proc. of International Working Conference
on Software Visualization (VISSOFT). IEEE, 2013.

[26] Michael Homer and James Noble. Combining tiled and textual views
of code. In Proc. of International Working Conference on Software
Visualization (VISSOFT). IEEE, 2014.

[27] Michael Homer and James Noble. Lessons in combining block-based
and textual programming. Journal of Visual Languages and Sentient
Systems, 3, 2017.

[28] Hopscotch Technologies, Inc. Hopscotch - learn to code through creative
play. https://www.gethopscotch.com/, 2011.

[29] Nigel Horspool, Judith Bishop, Arjmand Samuel, Nikolai Tillmann,
Michał Moskal, Jonathan de Halleux, and Manuel Fähndrich. TouchDe-
velop: Programming on the Go. Microsoft Research, 2013.

[30] Steven Houben, Nicolai Marquardt, Jo Vermeulen, Clemens Klokmose,
Johannes Schöning, Harald Reiterer, and Christian Holz. Opportunities
and challenges for cross-device interactions in the wild. Interactions,
24(5):58–63, 2017.

[31] Kori Inkpen. Drag-and-drop versus point-and-click mouse interaction
styles for children. Transactions on Computer-Human Interaction,
8(1):1–33, 2001.

[32] Petra Isenberg, Danyel Fisher, Sharoda A Paul, Meredith Ringel Morris,
Kori Inkpen, and Mary Czerwinski. Co-located collaborative visual
analytics around a tabletop display. Transactions on Visualization and
Computer Graphics, 18(5):689–702, 2012.

[33] Timothy Jones, Michael Homer, James Noble, and Kim Bruce. Object
inheritance without classes. In Proc. of European Conference on Object-
Oriented Programming (ECOOP), 2016.

[34] Alan Kay. Squeak Etoys authoring & media. Research note, Viewpoints
Research Institute, 2005.

[35] KyungTae Kim, Waqas Javed, Cary Williams, Niklas Elmqvist, and
Pourang Irani. Hugin: A framework for awareness and coordination
in mixed-presence collaborative information visualization. In Proc. of
Interactive Tabletops and Surfaces (ITS), pages 231–240. ACM, 2010.

[36] Martin Kropp, Craig Anslow, and Magdalena Mateescu. Enhancing agile
team collaboration through the use of large digital multi-touch cardwalls.
In Proc. of International Conference on Agile Software Development
(XP). ACM, 2017.

[37] Scott MacKenzie, Abigail Sellen, and William Buxton. A comparison
of input devices in element pointing and dragging tasks. In Proc. of
CHI, pages 161–166. ACM, 1991.

[38] John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and
Natalie Rusk. Programming by choice: urban youth learning program-
ming with scratch. In Proc. of SIGCSE, pages 367–371. ACM, 2008.

[39] Nicolai Marquardt, Frederik Brudy, Can Liu, Ben Bengler, and Christian
Holz. Surfaceconstellations: A modular hardware platform for ad-hoc
reconfigurable cross-device workspaces. In Proc. of CHI, page 354.
ACM, 2018.

[40] Jens Mönig, Yoshiki Ohshima, and John Maloney. Blocks at your
fingertips: Blurring the line between blocks and text in GP. In
Proc. of Workshop on Lessons and Directions for First Programming
Environments (Blocks and Beyond), pages 51–53. IEEE, 2015.

[41] Jakob Nielsen. Usability engineering. Elsevier, 1994.
[42] Roman Rädle, Hans-Christian Jetter, Nicolai Marquardt, Harald Reiterer,

and Yvonne Rogers. Huddlelamp: Spatially-aware mobile displays
for ad-hoc around-the-table collaboration. In Proc. of International
Conference on Interactive Tabletops and Surfaces (ITS), pages 45–54.
ACM, 2014.

9

https://code.google.com/p/blockly/
https://www.gethopscotch.com/

[43] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. Scratch: program-
ming for all. Communications of the ACM, 52(11):60–67, November
2009.

[44] J. Sauro. A Practical Guide to the System Usability Scale: Background,
Benchmarks & Best Practices. CreateSpace Independent Publishing
Platform, 2011.

[45] Ben Selwyn-Smith, Michael Homer, and Craig Anslow. Towards
collaborative block-based programming on digital tabletops. In Proc.
of Workshop on Lessons and Directions for First Programming Envi-
ronments (Blocks and Beyond). IEEE, 2017.

[46] Wolfgang Slany. Tinkering with Pocket Code, a Scratch-like program-
ming app for your smartphone. Proc. of Constructionism, 2014.

[47] Anthony Tang, Melanie Tory, Barry Po, Petra Neumann, and Sheelagh
Carpendale. Collaborative coupling over tabletop displays. In Proc. of
CHI, pages 1181–1190. ACM, 2006.

[48] Aaron Toney and Bruce H Thomas. Considering reach in tangible and
table top design. In Proc. of International Workshop on Horizontal
Interactive Human-Computer Systems (Tabletop), pages 2–pp. IEEE,
2006.

[49] Xin Wang, Yaser Ghanam, and Frank Maurer. From desktop to tabletop:
Migrating the user interface of agileplanner. In Proc. of International
Working Conference on Human-Centered Software Engineering (HCSE),
pages 263–270. Springer, 2008.

[50] David Wolber, Hal Abelson, Ellen Spertus, and Liz Looney. App
Inventor. O’Reilly Media, Inc., 2011.

APPENDIX

A. Background Information
1) What is your age?
2) What is your height?
3) How much experience do you have with computers using

mouse and keyboard?
4) What is the average numbers of hours per week you

spend using mouse and keyboard devices?
5) How much experience do you have with touch based

devices?
6) What is the average number of hours per week you spend

using touch based devices?
7) How much programming experience do you have?
8) Please list the textual programming languages you use

frequently, or have used extensively.
9) How much experience, if any, do you have with block-

based programming languages?
10) If you have experience with block-based programming

languages, please tick all languages you have used.
(Scratch, Blockly, Pocket Code, Pencil Code, Alice,
Tiled Grace, Other)

B. System Usability Survey
Answers were given in a 5-point Likert scale, ranging from

Strongly Disagree (1) to Strongly Agree (5)
1) I would like to use this interaction method with block

based languages frequently.
2) This interaction method was easy to use.
3) The interaction method and user interface were well

integrated.
4) I needed to learn a lot of things before I could start

completing the tasks.

5) I would be comfortable using this interaction method
without assistance in the future.

6) I felt very confident using this interaction method.
7) This interaction method was very cumbersome to use.
8) Most people would learn to use this interaction method

easily and quickly.
9) I found this interaction method to be unnecessarily

complex.
10) There was too much inconsistency with this interaction

method.

C. Freeform Questions

1) Please rank the three devices from best to worst below
(e.g. 1 = the device you liked using the most.).

2) In your opinion what are some of the advantages and
disadvantages of being able to send tiles to other devices,
using the current system?

3) Do you think the current system would be effective
for usage in an education setting such as a classroom?
Please briefly explain your answer.

4) Overall, do you think the cross device functionality was
effective for collaboratively completing programming
tasks? Please briefly explain your answer.

5) If you have any other comments about (or suggestions
for potential uses of, or possible improvements for) any
aspect of the system, please write them below.

D. User Study Tasks

Note: The first two tasks have some tiles located offscreen
that are required for the program to work. Please do not
modify, delete, or transfer these tiles.
Task 1 - Correctly draw shapes that match a provided template:

1) Match up method and method call (i.e. draw circles
(...) + method draw circles), by sending the method or
method call to the correct person.

2) Fix the errors within the methods.
3) Pass the fixed methods and method calls to the tabletop

for demonstrating correctness.
Task 2 - Draw the letters for “Hello World”:

1) Use the line.draw class to draw letters out of lines. The
letter W is already present as an example.

2) Split up letter drawing between the team, so that each
member has roughly an equivalent workload.

3) Send the final letters to the tabletop and run them
together.

Task 3 - Design a simple program:
1) Decide upon a program to implement. It is recommended

to stick to something fairly simple as you only have
limited time to complete this in.

2) Split up workload between the team as desired.
3) Demonstrate the final result on the tabletop.

10

	Introduction
	Related Work
	Collaborative Multi-Device Grace
	Cross Device Collaboration
	Tabletop Grace
	Floating Pie Menus
	Manipulating Blocks
	Text Input
	Mobile Grace
	Cross Device Communication

	User Study
	Design
	Participants
	Procedure
	Study Tasks
	Data Collection

	Results
	RQ1 – How effective is each device in a co-located cross device collaborative programming setting?
	RQ2 – How do participants collaborate when using Multi-Device Grace?
	RQ3 – Would the cross device functionality be useful in an education scenario?

	Discussion
	Block-Based Cross Device Collaboration
	Designing Touch Enabled Blocks-Based Environments

	Conclusion
	Acknowledgements
	References
	Appendix
	 Background Information
	System Usability Survey
	Freeform Questions
	User Study Tasks

