
©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.
This is the author’s version of this paper, published in the IEEE Working Conference on Software Visualisation (VISSOFT), 29-30 September 2014, Victoria, British
Columbia, Canada, pp 1–10. The final publication is available in IEEE Xplore via http://dx.doi.org/10.1109/VISSOFT.2014.11.

Combining Tiled and Textual Views of Code
Michael Homer and James Noble

School of Engineering and Computer Science
Victoria University of Wellington

New Zealand
Email: {mwh,kjx}@ecs.vuw.ac.nz

Abstract—“Jigsaw puzzle” programming environments manip-
ulate programs primarily by drag-and-drop. Generally these
environments are based on their own special-purpose languages,
meaning students must move on to another language as their
programs grow. Tiled Grace is a tile-based editor for Grace, an
educational programming language with a conventional textual
syntax. Using Tiled Grace, programmers can move seamlessly
between visualising their programs as tiles or source code, editing
their programs via tiles or text, and continue on to traditional
textual environments, all within the same programming language.
We conducted a user experiment with Tiled Grace, and present
the results of that experiment showing that users find dual views
helpful.

I. INTRODUCTION

Visual programming environments like Scratch [1],
Blockly [2], and Alice [3] present a program as a combination
of nested “jigsaw piece” tiles manipulated by drag-and-drop,
and have been used successfully with new programmers [4],
[5], [6], [7]. These environments present a limited language
with a restricted expressive domain, meaning that eventually
programmers must move on to a “real” textual programming
language and, in many cases, learn to program over again [8],
[9]. Tiled Grace is a programming environment for the conven-
tional textual language Grace [10] bridging these two worlds:
programs may be edited using a drag-and-drop tile interface,
but with tiles that map exactly to the concrete text syntax. In
Tiled Grace, users can switch to a conventional textual view
at any time, and can edit that text before switching back to the
tile view, making the correspondence between tiles and source
code clear.

This paper is structured as follows. In the next section we
briefly introduce Grace, and then in Section III describe Tiled
Grace and explain the design choices we made in it. Section V
describes the additional functionalities we implemented on top
of the base system. Section VI describes the user experiment
we ran using Tiled Grace, and Section VII the results we
obtained. Section VIII positions Tiled Grace among related
work, and Section X concludes.

This paper expands upon an earlier short paper from VIS-
SOFT 2013 [11] by incorporating additional functionality and
performing a user experiment to validate our design.

II. GRACE

Grace [10] is a new object-oriented language that supports
a variety of approaches to teaching programming. Grace
integrates accepted new ideas in programming languages into

a simple language that allows students and teachers to focus
on the essential complexities of programming rather than the
accidental complexities of the language.

Grace follows a conventional curly bracket textual syntax
and a semantic model that should map cleanly onto almost all
other object-oriented languages. To permit different teaching
styles a system of dialects [12] allows the definition of sub-
languages including new definitions, control structures, and
restrictions.

III. TILED GRACE

Tiled Grace presents an editing environment for Grace
programs based on drag-and-drop tiles. A tile represents a
single syntactic unit in the program, such as a string literal,
variable assignment, or method request. For example, tiles for
a string “Hello!” and variable “x” being depicted as:

Some tiles, like the string tile above, have text input fields
for the user to enter a value.

Some tiles have holes in them, where another tile may be
placed. For example, a variable assignment tile has two holes:
one for the variable to be assigned to, and one for the value:

The holes are the empty grey rounded-rectangular areas.
Other tiles with holes include operators such as + and *,
method requests, and print statements. The user can place a
tile inside a hole to build up their program.

To assign the string “Hello!” to the variable “x”, the user
combines these three tiles:

To put a tile into a hole, the user can drag the tile they want
to use over the hole, which will be highlighted when they are
over it, and then drop it there. The hole will expand to fit its
new contents.

Tiles can be connected together in sequence as well. To
create a variable and print its value, a var tile and a print tile
can be joined together:

http://dx.doi.org/10.1109/VISSOFT.2014.11

Fig. 1: Tiled Grace editing a small program in the “turtle
graphics” dialect.

The user can join tiles together in this way by dragging so
that the top of the tile they want to join on is near to the
bottom of the tile they want to join onto, and dropping the
tile there. The tile being joined onto will be highlighted:

Some holes can hold multiple tiles, such as the hole in the
body of a loop. The first tile can simply be dropped in as
for any other hole, and then other tiles can be joined onto the
bottom of it. The following code prints “Hello!” and “World!”
ten times each in alternation:

A complete program and its output is shown in the Tiled
Grace interface in Figure 1. The interface is divided into three
main areas: a large workspace area on the left, a toolbox of
available tiles, and text and graphical output areas on the right.

Tiles may be dropped anywhere in the workspace pane, and
the user can construct different sub-programs in different parts
of the area. Different categories of tile can be accessed from
a menu in the toolbox. At the bottom of Figure 1 the dialect
selector, run button, and other interface controls are displayed.

Different kinds of tile are shown in different colours.
Closely related concepts, such as variable declaration, refer-
ence, and assignment, have similar colouring.

The feel of Tiled Grace is similar to Scratch [1]. Tiled Grace
differs in that it is backed by a genuine textual language: the
tiles correspond to the syntax of the Grace language, in order
to support students when they eventually move out of Tiled

Grace and begin writing textual programs. Tiled Grace goes a
step further still: because the tiled representation maps exactly
onto text the user can switch between tiles and a standard
syntax-highlighted textual view at any time.

The transition from tiled to textual view is shown through
a smooth animation. Each tile and block of code has a
continuous visual identity throughout the transition, which
takes just under two seconds. First the tiles fade out to blocks
of the corresponding textual code, then the blocks glide into
place in a linear textual program, and finally the display
switches to editable text. When the user switches back to tiles,
the same occurs in reverse. Figure 2 shows this transition in
progress.

Each group of connected tiles is regarded as an independent
part of the program. The ordering between them in the textual
display is arbitrary, but consistent within the session. The
displayed text is editable if the user wishes: they may change
the source code, including adding and removing whole lines
or blocks, and then transition back to the tiled view.

A. Implementation

Tiled Grace is built on top of Minigrace, our prototype
Grace compiler, using its JavaScript backend with a new front-
end interface. Tiled Grace runs in a web browser without
installation, and can be accessed at http://ecs.vuw.ac.nz/∼mwh/
minigrace/tiled/. Tiled Grace runs in recent versions of Firefox
and Chrome, but does not work in other browsers at the time
of writing. To execute the code, Tiled Grace generates textual
Grace code from the program tree and gives that code to
Minigrace to compile, then executes the resulting JavaScript.

IV. MOTIVATION

When Scratch, Alice, and similar systems already exist, why
build Tiled Grace? Our design goal was to avoid some pitfalls
and problems that have been encountered with these existing
systems while remaining usable and engaging. In this section
we describe the issues with other systems that motivated the
different design choices we made in Tiled Grace.

One issue that has been encountered in introductory visual
languages is that learners do not see them as “real” program-
ming languages [13], [14], particularly when they move on
to textual languages and struggle initially [8]. These students
may feel that the visual language “didn’t count” and that they
are not capable of “real” programming, which view is harmful.

In Tiled Grace we aim to avoid or ameliorate this perception
by presenting the textual and visual representation of code
equally, and clearly the same language. The textual-tiled
combination was our original conception for Tiled Grace.

Another reported problem with moving on from visual to
textual languages [8], and moving between languages early in
learning in general, is that learners find it difficult to connect
analogous concepts in one language to the other. Our animated
transition between visual and textual representation aims to
demonstrate the exact parallel between the two.

In particular, it is known from both educational psychology
generally and computer science education that transitioning

http://ecs.vuw.ac.nz/~mwh/minigrace/tiled/
http://ecs.vuw.ac.nz/~mwh/minigrace/tiled/

Fig. 2: Frames of the animated transition from tiled to textual view. Coloured blocks fade to text and glide into place, finishing
as a linear textual program. Transitioning from textual to tiled view shows the same intermediate states in reverse.

between languages early in learning is unhelpful [15]. A
course structure predicated on such a transition will likely
run into trouble, but introductory tertiary courses in Scratch
and Alice move on to “real” languages early, often within the
first course, as programs become more complex. Permitting
both views should avoid this transition, so that learners can
begin in (Tiled) Grace, move gradually into (textual) Grace,
and continue in that full-strength language as long as required.

One issue with language transitions is that they are es-
sentially “one-way”: the learner must apply what they know
about the earlier language to the later, but movement in the
other direction is restricted. Tiled Grace has a deliberately
permeable barrier: a user can use the visual language, the tex-
tual language, and the visual language again, even within one
program. Allowing movement in both directions necessitates
some trade-offs, but we consider it appropriate to the goal of
the language.

Another key motivation was our dialect system, which
has no real parallel in the other visual language systems.
Scratch, Greenfoot, and Alice all expose different degrees of
complexity appropriate to different levels of development, but
only one each. Advanced users of Scratch find the limitations
frustrating, but permitting more flexibility can lead to early
learners becoming stuck. A key decision in the design of
Tiled Grace was that it would support dialects from the ground
up, so that learners could move into less restrictive language
variants as they went, while staying in the same language and
same interface. Again, that integration involves some trade off,
but we consider it worthwhile to allow a user to remain within
the same fundamental language as long as possible.

V. FUNCTIONALITY

On top of the basic functioning of Tiled Grace described
in the previous section, the tiled view and its duality with
the textual representation offer new possibilities for system
behaviour. In this section we describe the functionality for
handling errors, showing information about definitions, dealing
with language variants, and type checking.

A. Errors, Overlays, and Dialects

While the tiled view prevents most syntax errors, the user
may still write incomplete or incorrect code and these must be
reported to the user [11]. A graphical indicator shows whether
the program is currently valid; when there is an error the user
may hover over the indicator to highlight all existing errors.
Error sites are shown by desaturating the code area except

Fig. 3: Composite image of multiple overlays at once.

the error sites, and overlaying an associated explanation at the
site: for example, “Something needs to go in here” at an empty
hole.

To prevent errors spreading further than necessary, the user
can only switch views when the program is valid. If the user
tries to switch while there is an error, the error site will be
highlighted and the view unchanged.

In the text view, the user is unrestricted in the kinds of
error they can produce, as in any textual editor, and errors
are reported and marked in the usual way. If the user tries to
switch to the tiled view while the program does not compile,
they will be presented with the error and asked whether they
want to revert to the last-known-good version.

As well as visualising the code itself as tiles, Tiled Grace
can visualise relationships between parts of the code [11] (see
Figure 3). When a user hovers their mouse pointer over a
variable reference, the code view will be overlaid with a line
from that reference to the variable’s definition site, as well as
to any assignments to the variable in scope. Hovering over
a variable declaration produces an overlay that indicates all
the uses of that variable in scope. Similarly, hovering over
a method definition identifies any requests of that method in
the program, while hovering over a request (including of a
method that came from the dialect) highlights the definition
of the method. In this way the programmer can easily read the
program in execution order, rather than top-to-bottom, which
has been found to be helpful for novices [16]. If applicable,
multiple overlays may appear at once. These overlays are
similar to those found in spreadsheets [17] to illustrate the
dependencies of a formula.

Grace dialects can extend the methods available to the
programmer, or provide additional definitions. When the user
selects a dialect to use, Tiled Grace creates tiles for all of the

Fig. 4: The display of a simple type error the user is attempting
to make, where they try to place a string tile somewhere that
only numbers are permitted.

provided methods, based on a description of the dialect [11].
This description can be automatically generated from the
dialect itself, or manually with additional annotations.

Our support of dialects are an important generalisation of
Blockly’s ability to choose an extended sub-language to use.
Because our dialects persist and originate textually, the user
retains the ability to use and understand them even outside
Tiled Grace.

B. Type checking

Type checking in a drag-and-drop interface raises additional
obstacles versus conventional static type checking. While we
can run a standard algorithm over the code and display the
results, given the way the user interacts with the system we
would prefer to show errors at the time they are made, or even
to prevent their occurrence altogether.

We chose to use a variant on our overlay approach to report
errors as the user tried to make them, as well as preventing the
user from doing so. Any hole, including both those in built-in
tiles and those from dialects, can be annotated with the types
it will accept, and any tile can be similarly annotated with
the type of the object it represents. As Tiled Grace variable
declarations do not include static type annotations, all type
annotations are currently built in (either to the tool directly or
as part of dialect definitions), but the underlying system would
need no change to extend to other types were they added.

For example, a string tile is annotated with the type “String”,
and both holes in a + tile are annotated as accepting only
“Number”. When the programmer tries to place one into the
other, as in Figure 4, the hole is marked in pink and an error
message displayed nearby: the user will not be able to drop the
tile into the hole. In this way, the type error is prevented from
being introduced into the program in the first place, removing
the need for a typechecking pass. Nonetheless, some classes of
type error could be introduced within textual code and not be
caught there, and then make it through the transition to tiled.
As a result, the error-handling step described in Section V-A
also checks that all holes and their contents are well-typed,
and any errors are reported in the same way.

Scratch achieves a sort of type indication through its “jigsaw
puzzle” tiles: holes and tiles of different types have different
physical shapes, so a Boolean constant or expression will
not fit into a numeric expression. We initially wished to use
a similar approach, but ran into two problems: a limited
number of sensible shapes and difficulty with “multi-type”
holes. While Scratch is designed around these shapes and has

Fig. 5: Two hints showing a colour selector (top) and an image
preview (bottom). The menu allows changing between known
images, and will here update the remote def foo.

few types, in Grace we would exhaust the variety of readily
distinguishable shapes. At the same time, sometimes we have
holes (like equality tests) that can hold multiple types, and
shapes alone did not suffice for this situation. Our system
provides for an arbitrary number of types (including new types
unenvisaged by us), and gives the user explicit feedback and
vocabulary for the error they are having.

C. Hints

One advantage of a non-textual display of code, such as
our tiled view, is the flexibility to render additional “out-of-
band” information within the program display for the benefit
of the programmer. In Tiled Grace we call these “hints” and
a dialect may define them for its tiles. The dialect we built
for graphical programs includes two hints, both showing a
graphical representation of some text the programmer wrote.

The first hint is on a tile for defining colours using the hue-
saturation-lightness scale. A small block of colour appears on
the tile, updated live as the programmer edits the values or
definitions leading to them. The second involves images: the
dialect provides the ability to construct “image” objects, which
render an image at run time. The image used is determined by
the name assigned to the url field of the object. The hint catches
these assignments, shows a preview of the image referred to,
and offers a drop-down menu for the user to select from known
images. If the user chooses a new image, the code is updated,
even if the original definition site is remote from the code at
hand. Both of these are depicted in Figure 5.

These hints are implemented by augmenting a dialect def-
inition with JavaScript functions, which access Tiled Grace’s
internal representation and API. While the dialect implementor
must know the structure of Tiled Grace to build a hint, the end
user receives additional help with no effort on their part.

VI. EXPERIMENT

Our experiment trialled Tiled Grace with 33 participants,
primarily students enrolled in undergraduate courses in the
School of Engineering and Computer Science at Victoria Uni-
versity of Wellington. This experiment was approved by the

Fig. 6: A photograph of the room used for experimental trials.
The two experimental PCs are on the far edges of the picture,
with up to one participant on each machine. The experimentor
was positioned approximately at the camera during trials.

university’s Human Ethics Committee. Participants were asked
to use Tiled Grace to write, modify, and describe programs,
while we recorded their actions. Participants also completed
questionnaires about themselves and the experiment.

Our experimental design was guided by some key questions
we wished to answer (as well as by practical considerations,
particularly timing). We wished to find out whether users
found the ability to switch views useful, and also whether
they appreciated the explicit animation connecting the two, a
particular novelty of our approach. We wanted to see whether
the error reporting and type checking we had built was useful
to users. As a tool that users do not enjoy will not be used,
we wanted to measure engagement. Finally, we wanted users
to explore different parts of the system so we could discover
any unanticipated problems or successes. Further detail on the
structure and results of the experiment is available in the first
author’s thesis [18].

A. Participation

Participants were recruited by announcements in lectures,
forum posts, word of mouth, and direct recruitement, and
invited to make an appointment to perform the experiment.
These are the standard techniques used for experiments in the
department. Participants were able to attend in pairs, with
each person performing the experiment simultaneously but
independently. Two enticements to participate were provided:
a random draw for one of three $50 gift vouchers, and a
bowl of assorted confectionery that was available during the
experiment and some in-person recruiting sessions.

B. Instruments

The experiment was conducted in a room provided by
the School of Engineering and Computer Science of Victoria
University of Wellington set up for this purpose. The experi-
mental room had two ordinary workstation computers set up,
as shown in Figure 6. Each machine had an ordinary keyboard,
mouse, and screen, and was running Windows 7. All recorded
information, including questionnaires, occurred within a web

browser. Google Chrome 33 was used on each machine. The
experimentor sat at a distance positioned to see both screens
and observed participants during the experiment.

C. Protocol

On arriving at the experimental room each participant
was given an information sheet and a consent form. After
completion of the consent form each participant was led to a
workstation with the initial questionnaire open and was invited
to fill it in. Survey responses were collected electronically.

Following completion of the survey we provided a brief tour
of the experimental system. After the tutorial each participant
was provided a freshly-loaded version of our instrumented
interface that had not previously had any interaction to use
for the body of the experiment, which included five tasks
presented in sequence. Each task involved being presented
with a program and some instructions on what to do with
it. We selected the tasks with the goal of having users interact
with all different parts of the system in mind, while also
wishing to have the entire experiment complete within 40
minutes.

D. Data collection

While participants used the experimental system their on-
screen interaction was recorded by the tool. Every drag, vari-
able selection, text modification, switch of views, or attempt
to run the program was noted, and a snapshot taken after
every change. These logs were automatically saved to the
server while the participant used the system. No audio or
video recording was used in the experiment. Participants were
automatically prompted to move on after five minutes.

On arrival each participant was led to a workstation with
an initial questionnaire open and invited to fill it in. The
survey responses were recorded electronically. Following the
completion of the initial questionnaire participants were given
a scripted tour of the experimental system: we showed a
tutorial program in a graphical dialect and demonstrated ways
it could be manipulated. After the tour participants could
explore the system with the tutorial program before moving
on to the first task when they wished. The tasks were:

1) To modify a procedural program printing Fibonacci
numbers to print factorials instead. We chose this task to
begin with as it could be represented by a single linear
block of tiles and involved variable assignments. This
program was most similar to simple textual programs
from introductory courses.

2) To correct introduced errors in a modified version of the
program in Figure 1. The errors were primarily tiles out
of place, and a single misspelled method name.

3) To swap behaviours of two graphical objects.
4) To type a description of the behaviour of a program

without running it. This program was first presented in
the textual view, but users could switch if they wished.

5) A final “task” where users were told they had finished,
and could continue to play with the system and move
on to the final questionnaire when ready; this task

aimed to measure user engagement implicitly, similar
to Kelleher et al.’s use of “sneak time” [19]. A sample
program implementing a crude orbital simulator was
given, but users could replace it entirely if they wished.

The final questionnaire asked participants about their in-
teractions with the system and what they preferred. Free-
text entry fields were provided with prompts to say what the
participant liked or disliked about the system.

In the questionnaire we sought to measure what participants
found difficult or easy in the experiment, how engaged they
were, and what they liked or disliked. Questions primarily
asked participants for such information directly and gave a
seven-point Likert item for answers.

VII. RESULTS

A. Demographics

33 participants completed our experiment (one further par-
ticipant withdrew). Participants were principally drawn from
students in the School of Engineering and Computer Science
at Victoria University of Wellington and so represent at best
the demographics of the source. 23 (70%) of participants
were male while 10 (30%) were female. The median age of
participants was 20 and the most common age was 18. There
are decreasingly many participants in older age bands.

B. Programming experience

We asked questions about past programming experience.
The most informative presented 72 technologies (mostly lan-
guages, but also IDEs and other tools) and asked participants
to indicate any they had used before. The total number of
technologies ranged from 1 to 25. The median was 10.

The most popular technologies used were Java and Eclipse
(79%), both used in undergraduate courses in the school, while
Python (76%) and HTML (73%) were also popular.

Four participants had previously used Scratch, the system
most similar to our drag-and-drop interface, while six had
used Alice, another introductory programming language with
a partial drag-and-drop interface. One had seen Grace.

C. Engagement

A key measure of this system is user engagement. We
attempted to measure engagement in multiple ways. In the
simplest, we asked participants in the final questionnaire
whether the system was fun to use. Responses were on a
seven-point Likert item. Responses 1, 4, and 7 were labelled
“Agree”, “Neutral”, and “Disagree”.

The most common response was 2, with nine participants
(27%), while 1 (“Agree”) and 3 were chosen eight times
(24%) each. 25 participants in total (76%) chose one of
the responses on the Agree side. One participant chose 5,
a light disagreement, while seven (21%) were neutral. The
median response was 2, a medium agreement. We also asked
participants for their agreement with “I would use this system
again”, and again 76% chose an agreeing response.

The fifth task of our experiment included a program but
no actual task, instead informing participants that they were

0%

10%

20%

30%

40%

1
Agree

2 3 4
Neutral

5 6 7
Disagree

The system was fun to use

P
ro

p
o
rt

io
n How many

technologies
used

Ten or
fewer
More than
ten

Fig. 7: Participants’ agreement with “The system was fun to
use” split by how many technologies they had used.

finished, that they could use the system there if they wished,
and to move on to the final questionnaire when they were
ready. By this we intended to measure implicit engagement:
would participants use the system unprompted? We measured
whether participants interacted with the system for 45 seconds
or more. We chose this threshold conservatively, allowing 30
seconds for participants to read the task description, look at
the program, and potentially run it before moving on to the
questionnaire, and adding a 15 second buffer. 23 participants
(70%) used the system for at least 45 seconds here, while 10
(30%) moved directly on to the questionnaire. The median
time spent here was 1:43 and the mean 3:10.

We take from these results that participants were reasonably
engaged with the system. Large majorities in every case
indicated some degree of engagement, including both when
explicitly asked and through revealed preferences.

Not all participants were as enthusiastic, and we note one
trend shown in Figure 7 in particular. If we recall the list
of technologies we asked participants about their use of, we
can divide participants into two groups: those who have used
more than the median number of technologies (16 participants,
or 48%), and those who have not (17 participants, or 52%).
We can then examine the proportions in each group giving
each response to the statement “The system was fun to use”.
On doing so we see that participants with less experience
are substantially more positive than those with more. Fully
41% of less-experienced participants fully agreed with the
statement, while only 6% of more-experienced participants
did so. Similarly, 31% of more-experienced participants were
neutral, while only 12% of less-experienced participants were.
From these responses and regression analysis it appears that
all other things being the same a more experienced user will
enjoy the system less. This result is consistent with our and
others’ experience with Scratch, and not a substantial issue for
a tool designed for introductory programming.

D. Error handling

The tiled interface both prevents some kinds of error from
occurring at all and provides the opportunity for entirely new
kinds of error. Tiled Grace includes novel error reporting for

0

5

10

1
Agree

2 3 4
Neutral

5 6 7
Disagree

Finding errors in the code was easy

c
o
u
n
t

Fig. 8: Participant agreement that finding and fixing errors was
easy.

such code, as described in Section V-A. We asked participants
whether finding errors in the code was easy, and also whether
fixing them was easy. The results are shown in Figure 8.
Responses were on a seven-point Likert item with responses
1, 4, and 7 labelled “Agree”, “Neutral”, and “Disagree”.

Most participants agreed that finding errors was easy. The
modal answer was 1 (“Agree”), with 13 participants (39%),
while 26 in total (79%) gave an answer on the Agree side. The
median answer was 2, a moderate agreement. Responses were
much more varied on the question of fixing errors, with every
response from 1 to 5 being chosen by between five and seven
participants. Fixing errors in an unfamiliar system, language,
and codebase under time pressure would not generally be
expected to be easy, so this result is not surprising.

E. View switching

Tiled Grace permits switching between tiled and textual
views of code at any time. We measured participants’ use of
this feature and asked them several questions about it.

One particular focus of the tiled interface was the elim-
ination of basic syntax errors like mismatched brackets or
using the wrong symbol. We asked participants whether they
found the syntax easier to deal with in the tiled view. Most
participants (18, 55%) chose an answer on the Agree side and
answers were steadily less common moving towards Disagree.

Table I shows the distribution of time in text mode and
switches of view for each task and overall. The median number
of switches is six, the first quartile is four, and the third
quartile is eleven. Participants varied substantially in their use
of the view-switching feature, using it between zero and 22
times. The median participant spent one third of their time
in the text view and two thirds in the tiled view. We also
asked participants for their self-assessment of how they had
edited their code, which was broadly in accordance with our
instrumentation results.

Most participants used the tiled view a majority of the
time, but most switched views at least once for each of the
first three tasks, and used the text view a nontrivial amount
of time. These counts and proportions are fairly consistent
across tasks until the fourth. This task asked participants to
describe a program initially presented as text, and the majority
of participants did not switch to the tiled view at all. It may
be that participants simply did not think to switch views; an

Stat. T. 1 T. 2 T. 3 T. 4 T. 5 Tot.

Prop.
of time
in text
view

Min. 0% 0% 0% 3% 0% 1%
1Q 0% 0% 0% 65% 0% 24%

Med. 17% 53% 8% 100% 0% 33%
3Q 50% 84% 32% 100% 17% 52%

Max. 83% 94% 76% 100% 83% 78%

Number
of
switches
of view

Min. 0 0 0 0 0 0
1Q 0 0 0 0 0 4

Med. 1 1 1 0 0 6
3Q 3 3 3 1 2 11

Max. 8 8 8 5 14 22

TABLE I: Summary and distribution statistics for the usage of
different views per Task and overall.

Appearance
Colour
Errors

Overview
Revert

Switching
Syntax

Toolbox
Var list

0 3 6 9

count
W

h
a

t
d
id

 y
o
u
 l
ik

e
 a

b
o
u
t

th
is

 s
y
s
te

m
?
 (

c
o
d
e
d
)

Fig. 9: Coded participant responses to “What did you like
about this system?” Any point with more than one mention is
included.

alternative possibility is that they find text more useful for
comprehension, but the tiled view helpful for editing code. We
will examine these possibilities more closely when analysing
the freeform text responses from participants.

F. Freeform responses

We prompted participants for freeform responses on what
they liked and disliked about the system. Participants could
write arbitrary text in response to these questions. We coded
participants’ responses to the like and dislike questions and
show the distribution in Figures 9 and 10.

Figure 9 shows the distribution of coded responses to “What
did you like about this system?”. Participants could mention
multiple topics and be coded for each. Any mention of the
relevant topics was coded into that category. The figure shows
all topics that were mentioned more than once.

The most common response was that participants liked
the error reporting described in Section V-A and found it
helpful. The most interesting response for this experiment
was whether participants liked switching views, which six
participants identified explicitly, while four said they found
the tiled view helpful for an overview of the code and eight
found the tiled view helpful for dealing with syntax.

Figure 10 shows the distribution of coded responses to
“What did you dislike about this system?”. The figure shows
all topics that were mentioned more than twice.

Change op

Dislike GUIs

Middle drag

Dragging hard

New language

No hole default

Unfamiliar

0 3 6 9

countW
h
a
t
d
id

 y
o
u
 d

is
lik

e
 a

b
o
u
t

th
is

 s
y
s
te

m
?
 (

c
o
d
e
d
)

Fig. 10: Coded participant responses to “What did you dislike
about this system?” Any point with more than one mention is
included.

0
1
2
3
4
5

0% 50% 100% 150%

Ratio of misdrags into holes
to successful drags into holes

c
o
u
n
t

Fig. 11: Ratios of hole misdrags to non-misdrags.

The most common dislike was that the drag-and-drop was
too sensitive or insensitive or did not do what participants
wanted. A common note in the responses that we also observed
during the experiment was that some participants found it
difficult to drag a tile into a hole. The system required
the mouse pointer to be inside the borders of the hole to
consider the drag to be over the hole, and not just a portion
of the dragged tile; the hole would be highlighted (yellow)
when the pointer was over it and a tile was being dragged.
We considered this standard behaviour for drag-and-drop and
did not give it any significant design thought before the
experiment. Our preliminary trials did not show this issue.

We have confirmed subsequently that the default behaviour
of the standard interface widgets on Windows, Mac OS X,
KDE, and GNOME conforms to this expectation; nevertheless,
multiple participants had repeated difficulty here. It may be
that this convention is in fact unintuitive and users need to
learn it separately for each tool they use. Past human-computer
interaction research [20], [21], [22] has found that point-and-
click interfaces may involve fewer errors and be faster than
drag-and-drop. We examined the interaction data we collected
in more detail to try to discover any trends in the data.

We analysed the actions participants took during the exper-
iment to count these “mis-drag” events. We defined a misdrag
as a drag and drop onto the background followed immediately
by picking up the same tile in a subsequent drag event, without

interacting with the system in any other way in between. We
defined a “hole misdrag” as a misdrag where the tile was
eventually placed into a hole, and an “unrealised misdrag”
as one where the participant either tried to run the program
or viewed the error overlay immediately after the misdrag,
and so could be assumed not to have realised that the tile
was not where they wanted. The number of hole misdrags
ranged widely from 1 to 36. We can compare these counts
to the number of successful drags into holes by the user
(Figure 11). Five participants (15%) had more hole misdrags
than successful drags into holes, indicating serious difficulty.
If we consider unrealised misdrags only we see that again
around 15% have difficulty, with all other participants having
no unrealised misdrags. One participant had ten unrealised
misdrags, while four others had between two and four.

The fact that most participants had at least 10 hole mis-
drags, and that some participants had debilitating difficulty,
suggests that drag-and-drop may be a problematic paradigm
for programming. We discuss this issue further in Section IX.

G. Summary

Measures of engagement were high and participants gen-
erally (76%) enjoyed using our system. The error reporting
in the tiled view was very well received (79%). Participants
found the mapping between tile and text clear and useful,
and appreciated the ability to switch. A few participants had
significant difficulty programming by drag and drop.

H. Threats to validity

Our sample is drawn primarily from undergraduate students
in the School of Engineering and Computer Science at Victoria
University of Wellington, and may not be representative in
general. In particular, as participants volunteered to participate
in the study, those to whom the study sounded interesting
may have been more likely to choose to participate. As most
participants had meaningful past programming experience,
they are not the true novices that Grace aims to support.
Both the pre- and post-questionnaires were completed in the
experimental room with the experimentor present, although
not watching their responses. Participants may have been
influenced by this situation to rate their experiences more
favourably than otherwise. As well, when participants came in
pairs they may have been influenced to hurry if they observed
the other participant completing before them, which may affect
their performance or responses. Similar pressure may have
resulted from the time limits we imposed on tasks.

VIII. RELATED WORK

A. Scratch

Scratch [1] is a wholly visual drag-and-drop programming
environment with jigsaw puzzle–style pieces, aimed at novices
and children. Scratch is purely visual: there is no textual
representation of Scratch code at all, and some tiles in the
system take advantage of layout tricks not possible in text.
A Scratch program is able to talk exactly about the graphical
microworld the system presents, and no more, so eventually a

student must move on and use a “real” language when their
programs become more complicated.

Tiled Grace avoids this immediate need by allowing arbi-
trarily complex programs and always providing an equivalent
(and co-equal) textual representation for a program. A student
may gradually use the textual editor more and more until they
are confident in moving to a more standard environment, or
even continue to use Tiled Grace indefinitely without any loss.

In our experiment we found that participants appreciated
having a conventional textual view available, even when they
preferred to edit graphically. We believe from these results that
including a bijective textual representation of code is helpful
in visual editors and that Scratch and others should consider
incorporating such a representation.

A number of aspects participants in our experiment disliked
were common across most tile-based editors including Scratch,
notably finding dragging to be a chore, which conformed with
our own experience in Scratch. In Section IX we discuss
possible future work with both Scratch and Tiled Grace
relating to this point.

Scratch includes one notable feature that our system does
not: when a Scratch program is running, each tile is high-
lighted in turn as it is executed. The idea behind this high-
lighting is to make the flow of control clear, particularly
the fact that multiple threads of control flow are executing
simultaneously in a Scratch program. Our system does not
include such highlighting; primarily, this omission is a techni-
cal limitation of the JavaScript environment and the generated
JavaScript code from Minigrace. Because Minigrace generated
JavaScript code, and browsers execute JavaScript in a single-
threaded and blocking fashion, we could not provide any visual
update from a program until it completed. Alternative code
generation techniques allow solving this problem, but we did
not implement these in Minigrace.

B. Blockly

Blockly [2] is very similar in ethos to Scratch. Blockly runs
in a web browser and incorporates language variants (what we
call dialects), but in mimicking Scratch also has no editable
textual format. The same limits apply to Blockly and Scratch.

Blockly supports exporting code to a number of languages,
but there is no way to reverse the process and no explicit
indication of which parts of the visual representation cor-
respond to which parts of the exported code. Tiled Grace
makes this connection clear through animation, and experi-
mental participants indicated that they liked and understood
the correspondence. We believe that making the connection
between the two formats explicit is important for participants
transitioning from visual to textual programming.

C. Calico Jigsaw

Calico Jigsaw [23] is a drag-and-drop visual language for
the multi-language Calico development environment. Jigsaw
programs can be exported to Python code. Unlike Tiled Grace,
Jigsaw code export is to a complete textual program and does
not provide a direct mapping to and from the corresponding

tiles. The transition is intended to be one-way and one-time,
rather than having users remain in a single language.

D. Alice

Alice [3] is a 3D microworld language manipulated by
drag-and-drop. Alice uses drag-and-drop both for putting 3D
models into the microworld and for editing logic; there is
no interaction with concrete textual syntax. Our system does
not include a persistent microworld and does not permit
manipulating the worlds it does present (through dialects)
other than programmatically. Alice programs can only interact
with this microworld and cannot express tasks outside of it.

Event handlers on Alice’s in-world objects are put in place
through drag-and-drop in a similar way to our tiled view,
but there is no editable text. One notable difference in the
way the drag-and-drop logic behaves compared to ours is that
Alice code does not allow even temporary syntax errors: when
placing an “if-then” into the code, the programmer cannot
move on to any other task before they fill in the condition.
We consider such a prohibition to be a reasonable option, but
note that it obstructs other idioms. In particular, one way of
programming with both Tiled Grace and Scratch is to drag
multiple tiles from the toolbox onto the workspace when
knowing that they will be needed and then assembling them
once all are available, avoiding back-and-forth trips to the
toolbox. We are unsure which approach is best, but a future
experiment could use both.

Powers, Ecott, and Hirshfield experimented with transi-
tioning from Alice to Java (with BlueJ) in an introductory
programming course [8]. They observed that many students

were intimidated by the textual language and syntax,
and seemed to have a difficult time seeing how the
Java code and the Alice code related

even when working with exactly corresponding Alice and Java
code. The authors identify this problem as a potential issue
for visual programming languages for novices in general. Our
system aims to ease this transition to conventional syntax
by explicitly showing how tiled and textual code relate. In
addition, Tiled Grace was explicitly designed with a permeable
barrier in mind: a user is not forced to move entirely into the
textual world at once, but can acclimatise gradually.

IX. FUTURE WORK

While Tiled Grace includes simple type checking to prevent
common errors, we would also like, if possible, to signal what
is permissible in advance by some feature of the tiles them-
selves. Scratch and Blockly use a “jigsaw puzzle” approach,
where only tiles that “fit” can be placed in any given position,
but this is incomplete; some tiles may be the correct shape
but still not allowed (in Blockly) or not sensible (in Scratch)
in a particular location. We plan to investigate variations of
shape, colour, and other attributes to indicate these restrictions
in advance of a user trying to perform the task in the program.

The graphical design of the tool would benefit from further
consideration. The current colouring of tiles is essentially
arbitrary, while the overlays are functional but may obscure

areas of the program. We intend to create a more consistent
design and investigate variations to the overlay displays such
as transparency and alternative pathfinding.

At present our view-switching system only allows programs
with no current errors to be switched to the other view. In
part this is for technical and representational reasons: some
erroneous code has no clear representation in one view or the
other. Some errors, however, could be seen on both sides of
the divide, and users may benefit from being able to look at
them in two different ways. In future we may allow at least
some classes of error to pass through the barrier between the
two views, but establishing which errors are suitable, both
technically and in terms of not creating additional confusion
for the user, is design work remaining to be performed.

In Section VI we outlined experimental results suggesting
that some participants had substantial difficulty with drag-and-
drop, and many noted some degree of difficulty, suggesting
that drag-and-drop may not be the most suitable paradigm for
programming. After the experiment we examined the human-
computer interaction literature and described in Section VII-F
that some HCI research has suggested that drag-and-drop is a
problematic interaction mechanism in general, and that a point-
and-click arrangement is less error-prone. Further research is
required to determine the impact of this issue in relation to
visual programming; in particular, given the target markets of
Scratch and Grace, and the recent work of Barendregt [24] on
children’s interaction with various interfaces, more structured
classroom-style experimentation may be in order.

X. CONCLUSION

Tiled Grace is a graphical editing environment for Grace,
inspired by visual program editors such as Scratch. Tiled Grace
visualises code as nested “tiles” that can be manipulated by
drag-and-drop, eliminating many syntax errors. Tiled Grace’s
tiles always correspond exactly to Grace’s textual syntax,
so that users become familiar with the textual syntax while
dragging and dropping tiles. The user can switch between
the tiled and textual view, with the program editable in both
forms. Tiled Grace can also visualise relationships between
definitions and uses of variables and methods.

We conducted an experiment to measure user engagement
with Tiled Grace, and how people would use the tiled view,
view-switching and error-reporting provided by the tool. We
found that participants generally (76%) enjoyed using our
system and that other measures of engagement were high,
supporting the use of these features in development tools. We
also found that enjoyment was lower for more experienced
users, suggesting that Tiled Grace and similar interfaces may
be most appropriate within the novice market Grace targets.

The error reporting (desaturating all non-erroneous tiles and
overlaying explanations) was very well received. 79% agreed
that finding errors in the code was easy with this reporting
style. This approach does not strictly require a tiled view and
might have application in more conventional editors as well.

We showed in the experiment that participants found having
a more conventional textual view of code available to be

helpful, even if they liked to edit the graphical version, and
that they liked to have the graphical version available for an
“overview” even when they were editing textually. The direct
equivalence between the two views was helpful.

Participants also noted features afforded by the tiled view,
such as colour coding, a toolbox of available methods, lists
of variables in scope, and direct indicators of the definition or
usage sites of variables and methods to be helpful. Several of
these features could be incorporated into conventional editors.

REFERENCES

[1] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009.

[2] “Blockly,” https://code.google.com/p/blockly/.
[3] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in introduc-

tory computer science,” in SIGCSE Bulletin, vol. 35, no. 1, 2003.
[4] D. Franklin, P. Conrad, B. Boe, K. Nilsen, C. Hill, M. Len, G. Dreschler,

G. Aldana, P. Almeida-Tanaka, B. Kiefer, C. Laird, F. Lopez, C. Pham,
J. Suarez, and R. Waite, “Assessment of computer science learning in a
Scratch-based outreach program,” in SIGCSE ’13.

[5] Q. Burke and Y. B. Kafai, “The writers’ workshop for youth program-
mers: Digital storytelling with scratch in middle school classrooms,” in
SIGCSE ’12, New York, NY, USA, pp. 433–438.

[6] O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari, “Learning
computer science concepts with scratch,” in ICER ’10, pp. 69–76.

[7] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk, “Pro-
gramming by choice: Urban youth learning programming with scratch,”
SIGCSE Bull., vol. 40, no. 1, pp. 367–371, Mar. 2008.

[8] K. Powers, S. Ecott, and L. M. Hirshfield, “Through the looking glass:
Teaching CS0 with Alice,” SIGCSE Bull., vol. 39, no. 1, Mar. 2007.

[9] D. Parsons and P. Haden, “Programming osmosis: Knowledge transfer
from imperative to visual programming environments,” 2007.

[10] A. P. Black, K. B. Bruce, M. Homer, J. Noble, A. Ruskin, and
R. Yannow, “Seeking Grace: a new object-oriented language for
novices,” in SIGCSE, 2013. [Online]. Available: http://doi.acm.org/10.
1145/2445196.2445240

[11] M. Homer and J. Noble, “A tile-based editor for a textual programming
language,” in VISSOFT ’13, Sept 2013, pp. 1–4.

[12] M. Homer, T. Jones, J. Noble, K. Bruce, and A. Black, “Graceful
Dialects,” in ECOOP 2014, ser. LNCS, 2014, vol. 8586. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-44202-9 6

[13] C. Lewis, S. Esper, V. Bhattacharyya, N. Fa-Kaji, N. Dominguez, and
A. Schlesinger, “Children’s perceptions of what counts as a program-
ming language,” J. Comput. Sci. Coll., vol. 29, no. 4, Apr. 2014.

[14] C. M. Lewis, “How programming environment shapes perception, learn-
ing and goals: Logo vs. Scratch,” in SIGCSE ’10.

[15] D. B. Palumbo, “Programming language/problem-solving research: a
review of relevant issues,” Review of Educational Research, vol. 60,
no. 1, pp. 65–89, 1990.

[16] R. A. Jeffries, “Comparison of debugging behavior of novice and expert
programmers,” in AERA Annual Meeting, 1982.

[17] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, and
I. Kwan, “End-user debugging strategies: A sensemaking perspective,”
ACM Trans. Comput.-Hum. Interact., vol. 19, no. 1, May 2012.

[18] M. Homer, “Graceful language extensions and interfaces,” Ph.D. disser-
tation, Victoria University of Wellington, 2014.

[19] C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling Alice motivates
middle school girls to learn computer programming,” in CHI ’07.

[20] K. M. Inkpen, “Drag-and-drop versus point-and-click mouse interaction
styles for children,” ACM Trans. Comput.-Hum. Interact., vol. 8, no. 1.

[21] D. J. Gillan, K. Holden, S. Adam, M. Rudisill, and L. Magee, “How
does Fitts’ law fit pointing and dragging?” in CHI ’90.

[22] I. S. MacKenzie, A. Sellen, and W. A. S. Buxton, “A comparison of
input devices in element pointing and dragging tasks,” in CHI ’91.

[23] D. Blank, J. S. Kay, J. B. Marshall, K. O’Hara, and M. Russo, “Calico:
A multi-programming-language, multi-context framework designed for
computer science education,” in SIGCSE ’12.

[24] W. Barendregt and M. M. Bekker, “Children may expect drag-and-drop
instead of point-and-click,” in CHI EA ’11, 2011.

https://code.google.com/p/blockly/
http://doi.acm.org/10.1145/2445196.2445240
http://doi.acm.org/10.1145/2445196.2445240
http://dx.doi.org/10.1007/978-3-662-44202-9_6

	Introduction
	Grace
	Tiled Grace
	Implementation

	Motivation
	Functionality
	Errors, Overlays, and Dialects
	Type checking
	Hints

	Experiment
	Participation
	Instruments
	Protocol
	Data collection

	Results
	Demographics
	Programming experience
	Engagement
	Error handling
	View switching
	Freeform responses
	Summary
	Threats to validity

	Related work
	Scratch
	Blockly
	Calico Jigsaw
	Alice

	Future work
	Conclusion
	References

