
©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.
This is the author’s version of this paper, published in the IEEE Working Conference on Software Visualisation (VISSOFT), 27-28 September 2013, Eindhoven, Netherlands,
pp 1–4. The final publication is available in IEEE Xplore via http://dx.doi.org/10.1109/VISSOFT.2013.6650546.

A Tile-based Editor
for a Textual Programming Language

Michael Homer and James Noble
School of Engineering and Computer Science

Victoria University of Wellington
New Zealand

Email: {mwh,kjx}@ecs.vuw.ac.nz

Abstract—“Jigsaw puzzle” programming environments manip-
ulate programs primarily by drag-and-drop. Generally these
environments are based on their own special-purpose languages,
meaning students must move on to another language as their
programs grow. Tiled Grace is a tile-based editor for Grace, an
educational programming language with a conventional textual
syntax. Using Tiled Grace, programmers can move seamlessly
between visualising their programs as tiles or source code, editing
their programs via tiles or text, and continuing on to traditional
textual environments, all within the same programming language.

I. INTRODUCTION

Programming environments like Scratch [1] present a pro-
gram as a combination of nested “jigsaw piece” tiles ma-
nipulated by drag-and-drop, and have been used successfully
with new programmers. These environments present a limited
language with a restricted expressive domain, meaning that
eventually programmers must move on to a “real” textual
programming language. Grace is a new object-oriented lan-
guage with a conventional textual syntax, being designed to
teach novices to program. Tiled Grace is a programming
environment for Grace bridging these two worlds: programs
may be edited using a drag-and-drop tile interface, but with
tiles showing the concrete text syntax. In Tiled Grace, users
can switch to a conventional textual view at any time, and can
edit that text before switching back to the tile view, making
the correspondence between tiles and source code clear.

In the next section we will give a brief description of the
important design features of the Grace language. In Section III
we describe Tiled Grace and explain the design choices we
made in it. Section V positions Tiled Grace among related
work, and Section VII concludes.

II. GRACE

Grace [2] is a new object-oriented language that supports
a variety of approaches to teaching programming. Grace
integrates accepted new ideas in programming languages into
a simple language that allows students and teachers to focus
on the essential complexities of programming rather than the
accidental complexities of the language.

A key goal of the language is that students who have mas-
tered programming in Grace should find it easy to transition
to other languages. To that end, Grace follows a conventional
“curly bracket” textual syntax and a semantic model that
should map cleanly onto almost all other object-oriented

languages. To permit different teaching styles a system of
“dialects” [3] allows the definition of sub-languages including
new definitions, control structures, and restrictions.

III. TILED GRACE

Tiled Grace presents an editing environment for Grace
programs based on drag-and-drop “tiles”. A complete program
and its output is shown in Figure 1. Tiles may be dropped
anywhere in the large leftmost pane, and the user can construct
different sub-programs in different parts of the editing pane.
Different kinds of tile are shown in different colours, with
closely related concepts, such as variable declaration, refer-
ence, and assignment, having similar colouring. 1

Some tiles have “holes” for other tiles to be dropped into,
such as tiles representing operators or method requests. Other
tiles have input fields for the user to enter a number or string
constant, or to name a variable or method. Where there is a
hole, the user can drag an appropriate tile from the toolbox
(the narrow centre-right pane) into the marked empty space in
the destination tile, which will expand to fit its new contents.

The feel of Tiled Grace is similar to Scratch [1] and
Blockly [4], which inspired this work (see also Section V).
Tiled Grace differs in that it is backed by a genuine textual
language: the tiles themselves correspond to the syntax of
the Grace language, in order to support students when they
eventually move out of Tiled Grace and begin writing textual
programs. Tiled Grace goes a step further still: because the
tiled representation maps exactly onto the textual representa-
tion the user can switch to a standard syntax-highlighted view
at any time.

Figure 2 shows this transition in progress: while editing the
same program as shown in Figure 1, the user has switched
to a textual view, and the tiled view has transitioned to
syntax-highlighted code, while remaining in the same physical
location. The code blocks move smoothly into place, finishing
with a traditional linear textual editor view as shown in the
last frame. In this way, the relationship between tiles and the
corresponding part of the textual program is clearly visible.
Each separate group of connected tiles is regarded as an
independent part of the program, and the ordering between
them in the textual display is arbitrary, but consistent across
the lifetime of the program. This text is editable if the user

1In the present prototype, these colours are simply assigned arbitrarily in
sequence around the colour wheel.

http://dx.doi.org/10.1109/VISSOFT.2013.6650546


Fig. 1. Tiled Grace editing a small program in the “turtle graphics” dialect.

wishes: they may change the source code, including adding
and removing whole lines or blocks, and then transition back
to the tiled view.

A. Implementation

Tiled Grace is built on top of Minigrace, a self-hosted com-
piler for the Grace language [5] that targets C and JavaScript.
Tiled Grace runs in a web browser without installation, and
can be accessed at http://ecs.vuw.ac.nz/∼mwh/minigrace/tiled/.
Tiled Grace run in recent versions of Firefox, Chrome, and
Internet Explorer2, but does not work in other browsers
(notably Safari and Opera) at the time of writing.

The Tiled Grace prototype interface is pictured in full in
Figure 1. The code area is the large box in the top left; next to
it is the toolbox of available tiles. Different sets of tiles can be
selected by hovering over the toolbox with the mouse pointer
and choosing a category. On the far right are the drawing
and textual output areas. Below the code area are the options
to run, switch views, and load or save. The user can select
their dialect from the drop-down list in the bottom left, and
switch views with the “Code View” button. The green indicator
square next to the “Code View” button shows if the program
can be compiled (green) or has errors (red). The user can
download their program as ordinary Grace source code that
can run on other implementations, and load source files back
into the system.

IV. FUNCTIONALITY

A. Handling Errors

The very duality of view Tiled Grace is built around creates
new opportunities for error. As well as the common errors
of textual editing, tiles permit other forms of error, and the

2Because of technical limitations, the overlays on hover described in
Section IV-B do not function in Internet Explorer, but some overlays are
available by right-clicking on a tile.

Fig. 3. Errors displayed in a modified version of the turtle graphics example.

interface between the two forms must prevent errors spreading
from one to the other.

While the tiled view prevents most syntax errors, the user
may still omit to fill in required components — for example,
not specifying a variable name, leaving the hole on one side of
an operator empty, or moving a reference to a variable outside
of its scope. In each case, the textual representation of the
program would be incorrect or misleading. To combat that,
the user can only switch views when the program is valid:
when there are unfilled holes or other errors when the user
attempts to change view, the error sites will be highlighted and
the view unchanged. A graphical indicator shows at all times

http://ecs.vuw.ac.nz/~mwh/minigrace/tiled/


Fig. 2. Frames of the animated transition from tiled to textual view. Transitioning from textual to tiled view shows the same intermediate states in reverse.

whether the program is currently valid; when the indicator is
red the user may hover over it to highlight all existing errors,
which are labelled with their cause (for example, “Something
needs to go in here” at an empty hole, or “The variable
“length” is not in scope”). These error sites are shown by
desaturating all of the code area except the error sites, and
overlaying an associated error message at the site. An example
is shown in Figure 3 where the user has hovered over the red
square indicating an error, which was green for the unmodified
version of the program in Figure 1. Alternative indications are
possible; as well as desaturation, we have experimented with
overlaid arrows, and intend to investigate the use of borders,
animation, and combinations of these indications.

In the text view, the user is unrestricted in the kinds of
error they can produce, as in any textual editor. The code
is continually compiled in the background and errors marked
where they occur. If the user tries to switch to the tiled view
while the program does not compile, they will be presented
with the error and asked whether they want to revert to the
last-known-good version.

By ensuring the program is valid when changing views,
errors are not retained any further than necessary and no
additional long-term errors are created. This was a difficult
choice: some errors would be easier to solve if the user could
look at the program in two ways. In future we may allow at
least some classes of error to pass through the barrier between
the two views, but for the moment have chosen to ensure that
the program is always valid immediately after a transition.

B. Overlays
As well as visualising the code itself as tiles,

Tiled Grace can visualise relationships between parts of
the code (see Figure 4). When a user hovers their mouse
pointer over a variable reference, the code view will be
overlaid with a line from that reference to the variable’s
definition site, as well as to any assignments to the variable
in scope. Hovering over a variable declaration produces an
overlay that indicates all the uses of that variable in scope.
Similarly, hovering over a method definition identifies any
requests of that method in the program, while hovering over
a request (including of a method that came from the dialect)
highlights the definition of the method. If applicable, multiple
overlays may appear at once. These overlays are similar to
those found in spreadsheets to illustrate the dependencies of
a formula.

In the textual view the user may hover their mouse pointer
over a variable or method to see an overlay showing the
definition or use sites. In this view, the overlay is very like
the similar overlay in DrRacket [6].

Fig. 4. Composite image of multiple overlays at once. All blue lines run
between a use and the definition of a variable or method. The red line indicates
a reassignment of a variable; the green indicates a method from the dialect,
pointing at the dialect selector. Only one of these overlays can be shown at
one time in reality.

C. Dialects
Grace dialects can extend the methods available to the

programmer (as in the turtle graphics dialect in Figure 1)
and restrict features of the language or create new errors [3].
Tiled Grace supports both of these components.

When the user selects a dialect to use, Tiled Grace creates
tiles for all of the provided methods, based on a description
of the dialect. This description can be automatically generated
from the dialect itself, but many dialects will benefit from
manual annotations to reflect the intention of the dialect better.
A simple example of when this may be desirable is when
building control structures: the while()do() method takes two
blocks as arguments, one as the condition (because it may
be executed more than once), and one as the body of the
loop. Although both parameters are blocks, the intention is
different. The body is expected to contain many statements,
while the condition will likely be a single brief expression.
The dialect description can make this intention clear, as well
as other limitations. In future, annotations within the dialect
itself may specify these intentions.

Dialects are an important generalisation of the ability in
Blockly to choose an extended sub-language to use. Because
these dialects persist in textual form, and even originate in it,
the user retains the ability to use use and understand them
even outside Tiled Grace itself. Our dialects may also define
and report new classes of error, shown in the same way as all
other errors.

V. RELATED WORK

Scratch [1] is a wholly visual drag-and-drop programming
environment with jigsaw puzzle–style pieces, aimed at novices
and children. Scratch programs manipulate a persistent mi-
croworld; the Scratch environment also includes a persistent



graphical area which may contain multiple “sprites”, each
of which has its own independent code associated and may
move, draw, or display messages from itself. Scratch takes
full advantage of its purely-graphical nature; the shape of
each tile maps exactly to where it is syntactically valid, and
some tiles combine what would be multiple concepts in most
languages into a single element. The Scratch language follows
a concurrent event-driven model, where many pieces of code
may be executing at once. Scratch has been found useful for
motivating new programmers to begin exploring the ideas of
programming, and inspired this work. Unlike Grace, Scratch
code does not have a textual form and cannot be “written”.

Blockly [4] is very similar in ethos to Scratch, but incorpo-
rates multiple variant languages which can be extended with
JavaScript code, and lacks the persistent world of Scratch.
Blockly runs entirely in a web browser. The user can export
their Blockly program to JavaScript or Python, but there is no
editable textual format.

Alice [7] is a 3D microworld language manipulated by drag-
and-drop. The Alice IDE allows users to drop 3D models into
the world and associate logic with them. Each object in the
world is also an object in the sense of object orientation,
and can respond to events and messages from outside. All
code editing is by drag-and-drop; there is no concrete syntax,
although recent versions of Alice can also export code to Java.

Greenfoot [8] is an IDE for a subset of Java, presenting a
graphical microworld based on the Actor model. Users write
textual source code, but many high-level concepts are available
as built-in methods of the world or of all actors. Code is written
and accessed only with textual Java syntax, which users must
learn assisted by common IDE features.

DrRacket [6] is an IDE for the Racket language, a dialect
of Scheme aimed at education. The editor is purely textual,
but includes an overlay system linking definitions with their
usages when the mouse is hovered over a term in the editor,
as described for Tiled Grace in Section IV-B. DrRacket does
not include any alternative representations of a program, nor
attempt to visualise the editing in any other way.

TouchDevelop [9] integrates an essentially textual language
with an IDE aimed at touch-screen usage. The IDE avoids
most use of textual input by having the user manipulate the
syntax tree itself: the user touches where they want to change
and the IDE presents them with a list of options they can put
there, or will prompt them to populate required areas of new
code they add. The syntax is reasonably conventional, although
symbols are used to mark method calls and some aspects, such
as comments, are shown only by typographic features. The
interface is designed to be used on tablets and mobile phones,
as are the resulting programs, but they may also be used
without a touch screen. Programs are always shown textually
with light visual annotation, and editing always corresponds
essentially to a textual insertion or deletion.

VI. FUTURE WORK

Currently, Tiled Grace does not consider static type infor-
mation at all. We intend to consider adding at least basic type
checking for simple cases — for example, trying to subtract
strings — to avoid mistakes that users might make more easily

with the tiled interface. We would also like, if possible, to
signal these errors and others in advance by some feature
of the tiles themselves. Scratch and Blockly use a “jigsaw
puzzle” approach, where only tiles that “fit” can be placed
in any given position, but this is not complete; some tiles
may be the correct shape but still not allowed (in Blockly)
or not sensible (in Scratch) in a particular location. We plan
to investigate variations of shape, colour, and other attributes
to indicate these restrictions in advance of a user trying to
perform the task in the program.

The graphical design of the tool needs further work and
consideration. The current colouring of tiles is essentially
arbitrary, while the overlays are functional but may sometimes
obscure important areas of the program. The colours used in
the interface are not ideal for conveying semantic meaning and
should only be used in addition to other indicators. We intend
to create a more consistent design and investigate variations
to the overlay displays such as transparency and alternative
pathfinding.

Finally, we plan to conduct empirical evaluations of Tiled
Grace, focusing particularly on how (and if) Tiled Grace’s mul-
tiple views and animations help novices move from graphical
to textual syntax.

VII. CONCLUSION

Tiled Grace is a graphical editing environment for Grace,
a new object-oriented programming language aimed at edu-
cation. Tiled Grace visualises code as nested “tiles” that can
be manipulated by drag-and-drop, eliminating many syntax
errors. Tiled Grace’s tiles always correspond exactly to Grace’s
textual syntax, so that users become familiar with the textual
syntax while dragging and dropping tiles. The user can switch
between the tiled and textual view, with the program editable
in both forms. Tiled Grace can also visualise relationships
between definitions and uses of variables and methods. We
hope that Tiled Grace can ease the barrier of entry into
programming for novices while avoiding the need to re-learn
programming concepts when moving on to a textual language.

REFERENCES

[1] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009.

[2] A. P. Black, K. B. Bruce, M. Homer, J. Noble, A. Ruskin, and R. Yannow,
“Seeking Grace: a new object-oriented language for novices,” in SIGCSE,
2013.

[3] M. Homer, J. Noble, K. B. Bruce, and A. P. Black, “Modules and
dialects as objects in Grace,” School of Engineering and Computer
Science, Victoria University of Wellington, Tech. Rep. ECSTR13-02,
Mar. 2013, http://ecs.victoria.ac.nz/Main/Technical-
ReportSeries.

[4] “Blockly,” https://code.google.com/p/blockly/.
[5] A. P. Black, K. B. Bruce, M. Homer, and J. Noble, “Grace: the absence

of (inessential) difficulty,” in Onward!, 2012, pp. 85–98.
[6] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and

M. Felleisen, “Languages as libraries,” in PLDI, 2011.
[7] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in introduc-

tory computer science,” in ACM SIGCSE Bulletin, vol. 35, no. 1, 2003.
[8] M. Kölling, “The Greenfoot programming environment,” ACM Transac-

tions On Computer Education, vol. 10, no. 4, p. 14, 2010.
[9] R. N. Horspool, J. Bishop, A. Samuel, N. Tillmann, M. Moskal,

J. de Halleux, and M. Fähndrich, TouchDevelop: Programming on the
Go. Microsoft Research, 2013.

https://code.google.com/p/blockly/

	Introduction
	Grace
	Tiled Grace 
	Implementation

	Functionality
	Handling Errors
	Overlays
	Dialects

	Related Work
	Future work
	Conclusion
	References

