
A Partial Reproduction of A Guided Genetic
Algorithm for Automated Crash Reproduction

Philip Oliver, Michael Homer, Jens Dietrich, and Craig Anslow
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

Email: {philip.oliver, michael.homer, jens.dietrich, craig.anslow}@vuw.ac.nz

Abstract—This paper is a partial reproduction of work by
Soltani et al. which presented EvoCrash, a tool for replicating
software failures in Java by reproducing stack traces. EvoCrash
uses a guided genetic algorithm to generate JUnit test cases
capable of reproducing failures more reliably than existing
coverage-based solutions. In this paper, we present the findings
of our reproduction of the initial study exploring the effective-
ness of EvoCrash and comparison to three existing solutions:
STAR, JCHARMING, and MuCrash. We further explored the
capabilities of EvoCrash on different programs to check for
selection bias. We found that we can reproduce the crashes
covered by EvoCrash in the original study while reproducing two
additional crashes not reported as reproduced. We also find that
EvoCrash was unsuccessful in reproducing several crashes from
the JCHARMING paper, which were excluded from the original
study. Both EvoCrash and JCHARMING could reproduce 73%
of the crashes from the JCHARMING paper. We found that there
was potentially some selection bias in the dataset for EvoCrash.
We also found that some crashes had been reported as non-
reproducible even when EvoCrash could reproduce them. We
suggest this may be due to EvoCrash becoming stuck in a local
optimum.

Index Terms—Automated crash reproduction, empirical soft-
ware engineering, genetic algorithms, reproduction, search-based
software testing.

I. INTRODUCTION

When software failures occur, developers must manually
investigate stack traces and other post-crash information to
understand and then replicate the behaviour. Several tools
aim to automate reproducing crashes; Tools such as STAR,
JCHARMING, and MuCrash leverage information produced
from a crash to create new unit tests to reproduce the
crashes [1]–[3]. However, there are issues with these tools:
STAR cannot handle cases that have external environment de-
pendencies and is affected by the path explosion problem [1];
MuCrash mutates an existing test suite, so has some reliance
on existing tests exploring method sequences of interest [3];
and JCHARMING applies computationally expensive model
checking [2].

Soltani et al. presented EvoCrash, a tool using an evolu-
tionary approach that leverages a stack trace to reduce the
search space [4]. EvoCrash1 uses the automatic test generation
tool, EvoSuite2, to generate tests. EvoCrash is an altered

1http://www.evocrash.com
2http://www.evosuite.org

version of EvoSuite, which incorporates a novel fitness func-
tion developed by Soltani et al. This fitness function is a
piece-wise function that checks: the target line number is
reached, the correct exception is thrown, and the generated
stack trace is similar enough to the original trace [5]. The
function is a measure of error and gives a value of 0 when the
stack traces match. This fitness function is used in a guided
genetic algorithm to generate tests to replicate stack traces
from software crashes.

The guided genetic algorithm uses three genetic operators
developed by the original authors. The first generates an
initial population of tests, while the remaining two are altered
crossover and mutation operations. These operators ensure a
call to a method within the stack trace contained in each unit
test in the search population.

We looked to evaluate the effectiveness of EvoCrash based
upon the original paper presented by Soltani et al. [4]. We fur-
ther extended the suite of crashes used for evaluation to check
for selection bias. Finally, we present some evaluation of dis-
crepancies in the results. A package containing the supporting
data from the original study and our experiments can be found
at https://doi.org/10.5281/zenodo.5139193.

II. ORIGINAL STUDY

The authors of the original paper [4] use EvoCrash to
conduct an empirical study with the following two Original
Research Questions:

• ORQ1: In which cases can EvoCrash successfully repro-
duce the targeted crashes, and under what circumstances
does it fail to do so?

• ORQ2: How does EvoCrash perform compared to state-
of-the-art reproduction approaches based on stack traces?

The initial study was conducted over 50 bugs from Apache
Commons Collections3 (ACC), Apache Ant4 (ANT),
and Apache Log4j5 (LOG) [4]. The generation of tests for
each bug was repeated 50 times to account for the random
nature of the guided genetic algorithm. Soltani et al. selected
widely used parameter values for the evolutionary component
of EvoCrash:

3https://commons.apache.org/proper/commons-collections/
4http://ant.apache.org
5http://logging.apache.org/log4j/1.2

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
This is the author’s version of this paper, published in the IEEE International Conference on Software Maintenance and Evolution (ICSME), 27
September–1 October 2021, Luxembourg. The final publication is available in IEEE Xplore via https://doi.org/10.1109/ICSME52107.2021.00081.

http://www.evocrash.com
http://www.evosuite.org
https://doi.org/10.5281/zenodo.5139193
https://commons.apache.org/proper/commons-collections/
http://ant.apache.org
http://logging.apache.org/log4j/1.2
https://doi.org/10.1109/ICSME52107.2021.00081


• Population size: Initially set to 50, but increased by 25
iteratively up to 300 if the fitness value does not reach
0.0.

• Crossover probability: Set to 0.75.
• Mutation probability: Set to 1/n, with n being the

length of the current test case.
• Search timeout: Set to 30 minutes with early stopping

if the fitness value reaches 0.0.
Regarding the mutation probability, we cross-referenced the

paper referenced in the original study. Fraser and Arcuri state
the mutation probability in EvoSuite is 1/n, with n being the
size of the test suite [6]. This probability results in one test
case in the suite being mutated on average, rather than one
statement in a test case being altered, as reported by Soltani
et al. It is not clear if Soltani et al. have altered the mutation
probability as such in EvoCrash.

Soltani et al. selected two metrics for ORQ1 proposed by
Chen and Kim [1]. Crash Coverage ensures that the crash
has been successfully replicated by comparing the exception
type thrown and the source line from which it is thrown. The
original authors consider a crash to be covered when a fitness
value of 0.0 is reached. Test Case Usefulness concludes that a
test case is useful if it reveals the bug which caused the crash.
Two of the original authors independently performed manual
validation to decide if the test cases produced by EvoCrash
successfully reveal the bug. In the case of disagreements, the
conclusions were discussed. We do not assess the test case
usefulness as a part of our reproduction. This omission is
primarily due to the subjective nature of this metric.

ORQ2 was investigated through comparison with three
other crash reproduction technologies: STAR, MuCrash, and
JCHARMING. Soltani et al. used published data from these
tools, as the artifacts for the tools were unavailable at the time
of writing. The comparison to STAR was completed using 50
of the 52 bugs collected by Chen and Kim [1]. EvoCrash was
compared to JCHARMING using 8 of the 20 bugs collected
by Nayrolls et al. [2]. Finally, the comparison to MuCrash was
performed using the 12 ACC bugs collected for testing STAR
et al. [3]. Several bugs were excluded from the original study.

EvoCrash Performance ORQ1. The original paper
presents results for ORQ1, with EvoCrash successfully repli-
cating 41 of the 50 (82%) bugs [4]. EvoCrash reproduced
10 out of 12 bugs for ACC, 14 out of 20 for ANT, and
17 out of 18 for LOG. EvoCrash does not support the six
unreproducible cases for ANT due to dependencies on missing
external build.xml files. One of the cases from LOG is
unsupported due to a call to a static class initialiser. The two
unreproducible cases for ACC are due to the complexity of the
bugs. Using the Test Case Usefulness criteria from Chen and
Kim, the original authors conclude that 34 of the 39 generated
test cases were useful. The other 5 test cases mainly were
found to have dependencies on external files, which were not
available. In this study, we do not explore the usefulness of
the test cases generated by EvoCrash.

It is unclear what threshold the original authors have used to
discern whether a bug has been replicated. They state that “of

the replicated cases, the crash LOG-509 had the lowest rate
of replications - 39 out of 50,” with these numbers being 39
replications of the crash over 50 runs [4]. However, they also
state that for one of the non-reproducible cases (ACC-104),
“EvoCrash could replicate the case 4 times out of 50.” While
this is a complex bug that requires a specific order of method
calls to trigger the crash, it would appear that EvoCrash can
successfully replicate the behaviour, albeit occasionally.

Comparison to Other Tools ORQ2. Compared with STAR,
EvoCrash has almost identical results, except for ACC-104
(discussed above) [4]. EvoCrash is also capable of replicating
three additional cases which are prone to the path explosion
problem. Compared with MuCrash, EvoCrash can replicate all
the crashes replicated by MuCrash and an additional 3 cases,
with one of these cases marked as not useful. EvoCrash covers
all the crashes successfully reproduced by JCHARMING (6
out of 8) and can reproduce the two crashes JCHARMING
cannot. However, 3 of the test cases from EvoCrash are
marked as not useful, with two being crashes JCHARMING
could reproduce. Nayrolles et al. do not identify if crashes
reproduced by JCHARMING are useful; therefore, it could be
that the non-useful tests generated by EvoCrash are also not
useful when generated with JCHARMING [2].

III. REPRODUCTION

For the reproduction in this study, we performed two ex-
periments using the publicly available reproduction package6

for the original paper. The first experiment was run using
the parameters and configuration as-is from the package.
Following the further investigation into the parameters used
in the package, we found that some did not match what
was reported in the original paper for population sizes. Many
population sizes were initialised at 80, which does not follow
the experiment procedure outlined in the initial study. We
increased these to the next largest population size that fit the
procedure for population sizes that did not conform to the
experimental procedure. The experiment was rerun using these
updated parameters. In the second experiment, we followed the
initial study’s guidelines to increase the population sizes by 25
repeatedly up to 300 for crashes which cannot be reproduced.
All other parameters used match the experiment procedure
from the initial study.

There were a few issues when beginning the reproduction.
Firstly, the website for the package location in the original
paper no longer exists. This issue was circumvented by finding
the publicly available release package on GitHub. The second
issue was that the scripts used to run EvoCrash for the 50
crashes were not OS-agnostic. Classpath separators had been
hardcoded as semicolons (;) for use on a Windows machine.
These separators were changed to run the experiment on
Arch linux successfully. Thirdly, some of the paths for the
binaries for the targeted programs were incorrect. For example,
there were a few cases of the LOG4jb-1.0.4/ directory
being referenced as Log4jb-1.0.4/. These paths were

6https://github.com/STAMP-project/EvoCrash/releases/tag/
evocrash-refactored

https://github.com/STAMP-project/EvoCrash/releases/tag/evocrash-refactored
https://github.com/STAMP-project/EvoCrash/releases/tag/evocrash-refactored


fixed for the experiment. Another issue was that some of
the results from the original study were missing from the
reproduction package. The 30th run is missing most of the
results, while some other runs do not have the results for
some crashes. Finally, ACC-377 was missing from the crashes
and results in the reproduction package. This crash was added
to the experiment to ensure similarity between the original
experiment and the reproduction.

After replicating the main results from the study, we looked
to evaluate EvoCrash on some other crashes, including those
from the STAR and JCHARMING papers which were ex-
cluded from the original study. We also selected 7 crashes
from Apache Commons Lang7 (ACL) and 6 crashes from
Apache Commons BeanUtils8 (BEAN) to check for se-
lection bias in the initial dataset.

A. Experimental Results

Table I presents the original study’s results alongside the
results we have achieved over our two runs of the experiment.
It can be seen that our results are mainly similar to those
in the original study, with two notable exceptions: ACC-104
and ANT-43292. As previously discussed, ACC-104 is
successfully reproduced by EvoCrash in the original study,
albeit at a rate of 8%. In our experimental runs, we achieved
success rates of 2% and 8%. The original authors were looking
to answer the research question of whether EvoCrash could
reproduce a crash. We argue that even a single success means
EvoCrash can reproduce the crash. We further argue that a low
reproduction rate could indicate issues within the initialisation
of the genetic programming parameters. It could be possible
that EvoCrash becomes stuck in a local optimum with not
enough mutation occurring to allow the program to find a
better test case.

In the case of ANT-43292, the original study marked this
crash as not reproduced. We found 96% and 100% success
rates for this crash in our experiments. On closer inspection
of the data from the original study, we found that the crash was
successfully reproduced. In the underlying data, we found 47
successful reproductions, with two failures and one unreported
result. This data gives a success rate of 94% for ANT-43292
in the original study. It could be that the original authors meant
to mark this crash as not useful. However, we do not confirm
that this is the case.

Table II presents the results of crashes from DnsJava9,
Jfreechart10, Pdfbox11, and ANT which were used in the
STAR and JCHARMING papers [1], [2]. In the JCHARM-
ING paper there were also crashes used from ArgoUML12

and Open Mission Control Software13 [2]. How-
ever, we could not find the stack traces for these crashes and
thus have not included them. The crashes excluded from the

7https://commons.apache.org/proper/commons-lang/
8https://commons.apache.org/proper/commons-beanutils/
9https://github.com/dnsjava/dnsjava
10https://www.jfree.org/jfreechart/
11https://pdfbox.apache.org/
12https://github.com/argouml-tigris-org
13https://nasa.github.io/openmct/

TABLE I
RESULTS FROM ORIGINAL PAPER AND REPRODUCTION. PERCENTAGES OF

100% ARE NOT REPORTED FOR BREVITY

Project Bug ID Original Experiment 1 Experiment 2

ACC

4 Y Y Y
28 Y Y Y
35 Y Y Y
48 Y Y Y
53 Y Y Y
68 N (0%) N (0%) N (0%)
70 Y Y (100%) Y (98%)
77 Y Y Y
104 N (8%) Y (2%) Y (8%)
331 Y (82%) Y (52%) Y (88%)
377 Y Y (90%) Y (60%)
441 Y Y Y

ANT

28820 N (0%) N (0%) N (0%)
33446 Y Y Y
34722 Y Y Y
34734 Y Y Y
36733 Y Y Y
38458 Y (92%) Y (90%) Y (90%)
38622 Y (80%) Y (86%) Y (82%)
42179 Y Y Y
43292 N (94%) Y (96%) Y
44689 Y Y Y
44790 Y Y Y
46747 N (0%) N (0%) N (0%)
47306 N (0%) N (0%) N (0%)
48715 N (0%) N (0%) N (0%)
49137 Y Y Y
49755 Y (94%) Y Y
49803 Y Y Y (98%)
50894 Y Y Y
51035 N (0%) N (0%) N (0%)
53626 Y Y Y

LOG

29 Y (88%) Y (90%) Y (96%)
43 N (0%) N (0%) N (0%)
509 Y (74%) Y (50%) Y (78%)
10528 Y Y Y
10706 Y Y Y
11570 Y Y Y
31003 Y Y Y
40212 Y Y Y
41186 Y Y Y
44032 Y Y Y
44899 Y Y Y
45335 Y (94%) Y (94%) Y (96%)
46144 Y (82%) Y (78%) Y (86%)
46271 Y (94%) Y Y
46404 Y Y Y
47547 Y Y Y
47912 Y Y Y
47957 Y Y Y

Y - Crash has been replicated at least once
N - Crash has not been replicated

Percentage values are the number of successful replications from 50 runs

original study do not have a high success rate of reproduction
by EvoCrash, with 4 of the 13 crashes reproduced (43%). If
these crashes were included in the original study, EvoCrash
would have reproduced 44 out of 57 crashes (77%), rather
than the 82% reported [4].

Table II also shows the comparison of the crashes excluded
from the original study to STAR and JCHARMING. The
main comparisons here are between EvoCrash and JCHARM-
ING for the DnsJava, Jfreechart, Pdfbox, and ANT
crashes. Of these seven crashes, JCHARMING reproduced
5, while EvoCrash reproduced 3. Of the 15 crashes shared

https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-beanutils/
https://github.com/dnsjava/dnsjava
https://www.jfree.org/jfreechart/
https://pdfbox.apache.org/
https://github.com/argouml-tigris-org
https://nasa.github.io/openmct/


TABLE II
RESULTS FROM CRASHES EXCLUDED FROM ORIGINAL STUDY, INCLUDING

COMPARISON TO STAR AND JCHARMING

Project Bug ID Results STAR JCHARMING
DnsJava 38 N (0%) - Y

Jfreechart
434 Y (98%) - Y
664 N (0%) - Partial
916 N (0%) - Y

Pdfbox 1359 N (0%) - N
1412 Y (94%) - Partial

ANT 41422 Y (100%) Y N

Y - Crash has been replicated at least once
N - Crash has not been replicated

Percentage values are the number of successful replications from 50 runs

by EvoCrash and JCHARMING, JCHARMING successfully
reproduced 11 (73%), while EvoCrash also reproduced 11
(73%). It is of particular interest that JCHARMING is capa-
ble of reproducing DnsJava-38, Jfreechart-664, and
Jfreechart-916 where EvoCrash cannot. The original
study found a significant difference between the performances
of EvoCrash and JCHARMING [4]. However, it is clear
that with other crashes from the JCHARMING paper, the
performance is similar.

Table III presents the results of our evaluation on crashes
from Apache Commons Lang and Apache Commons
BeanUtils. We have selected these crashes to identify any
potential for selection bias in the original study. Of the ACL
crashes, EvoCrash successfully reproduced 4 out of 7 (57%).
The three failing tests use date formats or message formats,
which require specifically formatted strings as input. It is
therefore unsurprising that EvoCrash cannot reproduce these
crashes, as it has not been created with the capability of
consistently generating strings that match the complex formats
required by these classes. Finally, given the complexity of
configuration required to use BeanUtils in a program, the
0% success rate is unsurprising. As most of these BEAN
crashes arise due to configuration issues, EvoCrash struggles
to generate a test case to initialise such a configuration.

IV. DISCUSSION
The authors of the original paper set out to evaluate the tool,

EvoCrash, on several crashes and to compare these results with
the existing tools: STAR, MuCrash, and JCHARMING [4].
The original study successfully reproduced 41 of 50 (82%)
crashes. We found that EvoCrash can successfully reproduce
all the crashes presented in the original study through our two
main experiments. We also found two crashes (ACC-104 and
ANT-43292) which we reproduced with EvoCrash, but are
not reported as reproduced in the original study. We found
in the data underlying the original study that ANT-43292
has a 94% reproduction rate, while our experiments have 96%
and 100% reproduction rates. This misidentified result in the
original study likely occurred due to human error. We consider
a crash to be reproduced if it can be successfully reproduced
in at least one run. Crashes with low reproduction rates could
point to issues in the genetic parameters for EvoCrash, as there
may not be enough variability introduced to allow EvoCrash
to escape local optima.

TABLE III
RESULTS FROM ADDITIONAL CRASHES USED IN THIS STUDY

Project Bug ID Results

ACL

948 N (0%)
1186 N (0%)
1192 N (0%)
1276 Y (100%)
1292 Y (100%)
1310 Y (86%)
1385 Y (100%)

BEAN

276 N (0%)
302 N (0%)
351 N (0%)
421 N (0%)
541 N (0%)
547 N (0%)

Y - Crash has been replicated at least once
N - Crash has not been replicated

Percentage values are the number of successful replications from 50 runs

We present a comparison between EvoCrash, STAR, and
JCHARMING for crashes excluded from the original study.
For ANT-41422, EvoCrash and STAR could both success-
fully reproduce this crash; however, JCHARMING could not.
For the other crashes from DnsJava, Jfreechart, and
Pdfbox, we found that JCHARMING outperforms EvoCrash,
contrasting with the original result that EvoCrash outper-
formed JCHARMING. We find that EvoCrash and JCHARM-
ING both reproduce 73% of crashes once the full JCHARM-
ING dataset is used. This result could potentially point to
some selection bias in the original study, as these crashes
were excluded. As JCHARMING, STAR, and MuCrash are
not publicly available, selection bias could be present in the
dataset chosen for those studies.

While we do not analyse the usefulness of the test cases
generated by EvoCrash, we did consider the suitability of the
metric for this. The metric requires that the buggy stack frame
exists in the reproduced stack trace. A number of the crashes
reproduced by EvoCrash are attempting to reproduce only one
stack frame in a larger stack trace. A potential question for
future work is raised: whether this metric is suitable and if the
crashes can be considered reproduced if this metric is met.
Furthermore, this metric is subjective and cannot be easily
reproduced. Comparisons between the crashes reproduced by
EvoCrash and the actual bug fixes committed to the source
code could be drawn to clarify that the tests generated correctly
identify a bug and relate to the bug-fix in the main project.

We conclude that EvoCrash is a tool that can be used
to reproduce several crashes in Java successfully. However,
we are not sure the data presented in the original paper is
representative of the capabilities of EvoCrash. Several low-
performing crashes appear to have been excluded from the
original study, including those which contribute significantly
to the original paper’s conclusion that EvoCrash performs
significantly better than JCHARMING. We also suggest there
may be issues with the parametric setup of the genetic part of
EvoCrash, leading to low variability and the system becoming
stuck in local optima. Future work could look into these issues
and the usefulness of the test cases produced by EvoCrash.



REFERENCES

[1] N. Chen and S. Kim, “Star: Stack trace based automatic crash re-
production via symbolic execution,” IEEE Transactions on Software
Engineering, vol. 41, no. 2, pp. 198–220, 2015.

[2] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson, “JCHARM-
ING: A bug reproduction approach using crash traces and directed model
checking,” in 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 2015, pp. 101–110.

[3] J. Xuan, X. Xie, and M. Monperrus, “Crash reproduction via
test case mutation: Let existing test cases help,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 910–913. [Online]. Available:
https://doi.org/10.1145/2786805.2803206

[4] M. Soltani, A. Panichella, and A. van Deursen, “A guided genetic
algorithm for automated crash reproduction,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), 2017, pp. 209–
220.

[5] ——, “Evolutionary testing for crash reproduction,” in 2016 IEEE/ACM
9th International Workshop on Search-Based Software Testing (SBST),
2016, pp. 1–4.

[6] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transactions
on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

https://doi.org/10.1145/2786805.2803206

	Introduction
	Original Study
	Reproduction
	Experimental Results

	Discussion
	References

