
Branching Compositional Data Transformations in jq,
Visually
Michael Homer
mwh@ecs.vuw.ac.nz

Victoria University of Wellington
New Zealand

Abstract
jq is a widely-used command-line tool for filtering and trans-
forming JSON data, in the vein of sed and awk, including a
bespoke programming language for writing the filters. The
paradigm of that language is unusual: while its appearance
is somewhere between a shell pipeline and JavaScript, the
language is pure-functional and essentially concatenative,
the pipelines branch and interleave data invisibly, implicit
output flattening obscures all these effects, and most users
are unaware of any of its semantics, leading to confusion
when encountering any of these latent elements and diffi-
culty in constructing appropriate non-trivial filters, all the
while common debugging techniques are also obstructed by
the paradigm. These confusions can be eliminated by visually
demonstrating the recursively forking nature of evaluation
on actual data, and allowing manipulations of the program
or data to be reflected live, but no such tool exists for jq or
any similar approaches. We present a visualisation of jq’s
execution model that makes the branching nature manifest,
illustrating its effects on concrete values provided by the
user, and editing affordances that allow manipulating the
program with reference to real data.

CCS Concepts: • Software and its engineering→ Visual
languages; Functional languages; Data flow languages.

Keywords: jq, dataflowprogramming, object pipelines, stream
processing

ACM Reference Format:
Michael Homer. 2023. Branching Compositional Data Transfor-
mations in jq, Visually. In Proceedings of the 2nd ACM SIGPLAN
International Workshop on Programming Abstractions and Interac-
tive Notations, Tools, and Environments (PAINT ’23), October 23,
2023, Cascais, Portugal. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3623504.3623567

PAINT ’23, October 23, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your per-
sonal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 2nd ACM SIGPLAN International Workshop
on Programming Abstractions and Interactive Notations, Tools, and Environ-
ments (PAINT ’23), October 23, 2023, Cascais, Portugal, https://doi.org/10.
1145/3623504.3623567.

1 Introduction
jq [12] is a command-line tool for filtering and transforming
JSON data, and is widely-used in shell scripting, automation,
and CI/CD contexts. The jq tool is a Unix-style filter, reading
JSON data from standard input and writing JSON data to
standard output. Within the tool is a programming language
for writing transformation filters over JSON values. This
language has unusual semantics, which are not immediately
obvious from the syntax, and which are not well-understood
by most users. Elements of the language and tooling also
make conventional debugging and understanding operations
challenging, even those typical for comparable Unix filters
like sed and awk, or in other stream-based dataflow systems.
The language combines elements of functional program-

ming, concatenative programming, object pipelines, and
stream filters, while the distributive branching of the evalua-
tion model has more in common with the List monad than
any comparable tool. Many of these elements are hidden
behind a syntax aiming to be familiar to the intersection of
Unix shell users and JavaScript programmers; its own devel-
opers acknowledge that most users do not realise there is
a functional language inside. Only when encountering un-
expected behaviour, or trying to accomplish more complex
tasks, do users discover the more intricate inner model.

This paper presents an environment for exploratory visu-
alisation and composition of jq programs, aiming to expose
the semantics explicitly to the user. The intention is that, by
illustrating the intermediate effects of the program on con-
crete data, the user can better understand the behaviour of
the program on their data, and can more easily make changes
to the program to achieve the desired effect. For example,
a single input value may result in multiple outputs from a
single filter, and each of these represents a separate branch of
the remainder of the program, scoped to that value’s context.
The conventional jq tool flattens all outputs into a single tex-
tual stream of JSON values, concealing this scoped branching,
but in our environment the derivation of all values is visible
in the displayed grid of values.

The contributions of this paper are:

• An analysis of the semantics of the jq language and
evaluation model identifying its atypical elements.

• A user interface for examining and editing a jq pro-
gram that makes these semantics manifest, showing
all the implicit branching, repetition, and intermediate

https://orcid.org/0000-0003-0280-6748
https://doi.org/10.1145/3623504.3623567
https://doi.org/10.1145/3623504.3623567
https://doi.org/10.1145/3623504.3623567
https://doi.org/10.1145/3623504.3623567

PAINT ’23, October 23, 2023, Cascais, Portugal Michael Homer

phases, and allowing changes to the program to be
made directly on the data with live feedback.

• A parallel reimplementation of the behaviour of the jq
language in an explicative fashion, with tracing and
partial evaluation, to support structured analysis of
the language.

2 The jq Language and Semantics
jq provides a quasi-concatenative nondeterministic object
pipeline, a combination of relatively-uncommon features,
presented in a syntax and context very close in aspects to
both JavaScript and Unix shell scripting. A brief introduction
to the core points of the language follows.

The typical invocation of jq is in the form of a Unix pipeline
curl . . . | jq ’.result.points[]|select(.y>0)’. The
standard input (here represented as produced by the curl
command) is expected to be a JSON document or a sequence
of them. The single argument is a program in the jq lan-
guage, which is our main focus; these programs contain pipe
characters inside, not connected to the Unix pipes outside.

The program is a sequence of filters, which are composed
together to produce an eventual JSON value or values (or
nothing). Each filter is applied to an input object provided
from the previous step in the pipeline, or from the origi-
nal input. Filters include the object-index selector .name,
which selects the value of the named key from the object;
identity ., which produces its input unchanged; array in-
dexing with .[index]; and function calls like tostring and
select(condition). Filters can be composed by concatena-
tion: .result.points[3] composes three filters .result,
.points, and [3], to produce the third element of the ar-
ray called “points” inside the object called “result” within
the original context. They can also be composed by piping
from one to another: .result|tostring gives the output
of .result to the function tostring. The language is thus
almost concatenative and certainly compositional [11] in its
program construction. Some compositions of filters can be
used with either syntax, and some only with pipes; some
more complex operations are also possible, discussed later.

Every filter receives one JSON value as input, either from
standard input at the start, or from the filter to its left. The
filter produces zero or more JSON values as output, and each
is given one at a time to the next filter in the sequence. Filters
producing multiple outputs include the array/object value
iterator item[], which produces each value of an array or
object separately, and the comma operator, which produces
all of the outputs of each of its arguments in turn. When mul-
tiple outputs are produced, the pipeline splits into separate
branches for each value: the next filter, and all subsequent
filters, are applied starting with each value individually. For
example, .x[].y produces the value of the y key from each
value of the x key of the input object. Some filters can pro-
duce no outputs, such as the select function or the iterator

filter on an empty array; in these cases, the remainder of the
pipeline in this branch does not run.

At the end, jq outputs all JSON values produced at the end
of the pipeline, in one flat sequence.
Already there are some complexities apparent in the de-

scription: McCarthy nondeterminism [14] is pervasive at
every step, a linear-looking pipeline is secretly branching,
and concatenation is composition. The sample programs
above are ones that most jq users could produce and under-
stand, although some parts of the evaluation may not (need
to) be understood precisely. More complex programs un-
cover further branching, and more advanced features of the
language expose other elements that are often unexpected.
For example, the select function takes a conditional ex-

pression as its argument: .points[]|select(.y>0) pro-
duces all the values within the points array where the value
in y is greater than zero. However, the condition argument
could also produce multiple outputs, and the select func-
tion will emit its input value once for each true value in those
outputs: .[]|select(.[]>0) expects to consume an array
of arrays, and produces each inner array as many times as it
contains a positive number.

Variable bindings . . . | .y as $y | . . . give a name to
a value derived from the input which can be used anywhere
to its right, while passing on the input value itself unchanged.
These expose the branching of the pipeline directly, while
appearing out-of-place within the Unix-style pipeline.

Array literal expressions exist: [1,2,3] produces an array
with values 1, 2, and 3— but in fact they are not literals, but
a circumfix [...] operator that captures all the values
produced by the enclosed pipeline branches. This “literal” is
actually using the comma operator to produce three number
values, while [.x[], .y[]] will produce an array of all
the values in x followed by all the values in y.

Assignment statements exist, but do not mutate anything:
the language is pure-functional. Instead, they identify the
locations in the input that would be produced by the filter
on the left-hand side, and output a new object with those
locations replaced by the value on the right-hand side; this
holds no matter how complex the left-hand filter is, includ-
ing when it uses constructs like the select function. .x[].y
|= (1,2) produces two output objects for every input, with
every location that .x[].y would have produced being up-
dated to hold first 1, then 2.

2.1 Comprehension and Debugging
The interactions of all of these features often do not conform
to user expectations: there are several hundred questions on
Stack Overflow and Unix & Linux Stack Exchange pertain-
ing to unexpected jq behaviour, often involving branching,
variable bindings, or updates. The functional language inside
jq is mostly hidden and not considered by most users. Even
for users who do, properties of the system make debugging
challenging:

Branching Compositional Data Transformations in jq, Visually PAINT ’23, October 23, 2023, Cascais, Portugal

• the tool inescapably flattens its output, masking the
branching that produced it

• typical Unix pipeline debugging strategies, such as
truncating the pipeline to see what is produced by its
early segments, are often unhelpful, both because of
the flattening and because eliminating later branching
can be a semantic change

• capturing constructs like array constructors are all-or-
nothing, the intermediate values that went into them
not only not visible but not able to be made visible

• function arguments are not visible at all, and there is no
straightforward edit to allow inspecting the argument
values alongside their input and output values.

Neither conventional Unix nor JavaScript debugging tech-
niques are helpful, so for many users, jq is a black box.
For example, consider the jq pipeline .[].x[] | .z as

$z | .y[] | select(. % 4 == 0) | {z: $z, y: .}: it
accepts data of the form
[

{ "x": [
{ "y": [4, 5, 6, 7, 8], "z": "Apple" },
{ "y": [9], "z": "Orange" }

]
},
{ "x": [
{ "y": [], "z": "Banana" },
{ "y": [0], "z": "Pear" }
]

}
]

where any of these arrays could contain many (or no) ele-
ments, and produces outputs like
{ "z": "Apple", "y" : 4 }
{ "z": "Apple", "y" : 8 }
{ "z": "Pear", "y" : 0 }

with the structure flattened away.
It is common to build up Unix pipelines piece-by-piece,

or to debug them by truncation to see intermediate results,
and so it seems reasonable to use the same approach with
jq. However, truncating this pipeline by removing the final
component will output only the numbers 4, 8, 0, remov-
ing one further component merely a longer list of numbers,
and in neither case is it readily possible to tell what has
caused each value to appear or even how many of the out-
puts arose from any given stage or part of the input. Because
jq pipelines are in fact defining trees of transformations, the
derivation is important for the semantics, unlike in Unix
pipelines that are flat one-to-one streams, and so flattening
out to the eventual results, while likely useful when using
a working jq program within a shell pipeline, loses critical
information when debugging. At the same time, function
arguments are subject to the same nondeterministic evalua-
tion, so select(.y[] > 0) selects the input for each time a

value in y is positive: there is no way to truncate to see the
calculation, and removing selectwill produce a sequence of
unmarked booleans. While simple jq programs that are only
linear chains (such as a series of .field.accesses) will not
experience this loss of information, as soon as constructs
that introduce nondeterminism (such as array iteration), de-
pendency on prior branching (such as variable binding), or
discarded intermediate values (such as the select function)
are used, the derivation tree is important, but hidden.

3 A Visual Interface
Because the focus of a user of jq is on the JSON values being
processed, and the programs themselves are generally brief
and cryptic, we have designed a system that renders the val-
ues primarily. The program source is shown (and editable) at
the top, but the body of the display comprises JSON values.
The user provides an initial input value, or multiple values,
and the effect of the program is shown beside. Figure 1 shows
a simple example using the program from the previous sec-
tion, illustrating both the data-driven branching (with rows
splitting going rightwards), and dead threads of evaluation.

The derivation of a jq program is a directed acyclic graph
with adjacency constraints on join points, which can be ren-
dered in a tabular layout. Each cell represents a single value
that is consumed (or produced) by a stage of the pipeline,
and the result of the next stage is in the cell to its right. The
original input value will be at the leftmost cell, and the final
column will contain all the output values. When a single
value results in multiple for the next stage, the row splits
into multiple cells to its right. When multiple values are com-
bined into one, as in an array constructor, one collecting cell
spans multiple rows to the right of all of them.When a thread
of evaluation terminates with no output, the remainder of
the row will be empty.
Due to the potentially very large number of total stages,

by default the display shows only the effects of each pipe-
separated combined filter— that is, for a program .x.y |
select(.z>0) | .a[0], it will show three columns only,
plus the original input. The user can expand any column if
desired, so that .x and .y are shown separately, and similarly
for .a and [0]. A program with no pipes will start directly
in this expanded form.

Array constructor expressions capture all outputs within
them, written by surrounding any subprogram with square
brackets. Figure 2 shows different array construction pro-
grams in the visualiser; it is clear where the values come
from, and how they are combined into a single value for later
stages as large multi-row brackets are rendered around all
captured values. This figure also illustrates the evaluation of
the comma operator, which produces all of the outputs of all
comma-separated subprograms as its own output.

PAINT ’23, October 23, 2023, Cascais, Portugal Michael Homer

Figure 1. The jq program .[].x[] | .z as $z | .y[] | select(. % 4 == 0) | {z: $z, y: .} seen in the visualisation
environment, operating on a small JSON object that illustrates the branching (the multiple subrows splitting off to the right of
some cells) and non-producing elements (the partially-empty rows). The empty cells indicate that there was no output from
this filter for the input value to its left. The non-empty cells in each column correspond to the output of a truncated program
as discussed in Section 2.1.

3.1 Interaction
The system described so far renders traces of the program
evaluation on the given input, but it is also interactive in two
principal ways. The first is a simple live editing arrangement:
the program text displayed at the top is editable, and the
display updates in real time as the user changes the program,
or when changing the input data; temporarily-invalid inputs
while typing freeze evaluation until completed. Tightening
the feedback loop in this way is presumptively helpful, but
allowing interaction with the values themselves brings the
problem domain closer to the source code.

Any value cell can be selected and plausible filters to apply
to it will be offered, based on the type and shape of the value.

One other case arises: array constructor expressions such
as [.x,.y] collect multiple produced values into a single
output. When writing a program traditionally, the filters
are written inside the brackets and so are isolated from the
surrounding program, but semantically they run as they
would without the brackets and are then collated into a
single value. Selecting multiple values that could have been
produced within a single array constructor will offer this,
much more drastic, conversion also. Figuring out where the
boundaries on this collation would be is otherwise nontrivial,
and can be a complex refactoring, while the reverse direction
is sometimes helpful.

4 Implementation
Behind this tool is a reimplementation of jq in JavaScript,
based on the documentation and behavioural testing of the
original. The original jq is written in C, and is a complex
program with many features, but we have focused on the

core language and its semantics. The reimplementation lacks
several features of the original, such as its robust Unicode
support, but includes all of the core semantic elements rele-
vant here. The JavaScript backing library developed for this
project is available at https://github.com/mwh/jqjs. It follows
a tree-walking approach using generators to represent the
production of multiple values in each filter, and is intended
to be a more approachable reference for the semantics of jq
than the original implementation. A particular element of it
important for this tool is support for tracing the evaluation
of a pipeline. Tracing produces a structured representation
of the steps taken and the intermediate values produced in
each branch, which mainline jq cannot provide.

The user interface runs in a web browser, entirely on the
client side. The user can provide a JSON input value and a jq
program, and the trace of that program and input is rendered
across the page. The trace updates live as the program or
input is updated, and can be interacted with to make modifi-
cations as described in the previous section. The tool can be
accessed live at http://ecs.vuw.ac.nz/~mwh/demos/paint2023.
While it performs reasonably for relatively large inputs, for
either very large initial values or programs where branch-
ing blows out exponentially, it eventually becomes slow and
unresponsive, and in some cases runs into limitations of
browser layout engines.

5 Related Work
A number of online jq tools exist, generally operating by
running the native jq tool on a user-provided program and
input (either on a server or cross-compiled to WebAssem-
bly). These tools present the flattened results of entire jq
programs, just like the command-line tool, and do not enable

https://github.com/mwh/jqjs
http://ecs.vuw.ac.nz/~mwh/demos/paint2023

Branching Compositional Data Transformations in jq, Visually PAINT ’23, October 23, 2023, Cascais, Portugal

Figure 2. Slightly different jq programs operating on
an object containing arrays of conference and journal
names. Top: .conference, .journal | [.[].name],
producing two output arrays. Second: .conference[],
.journal[] | .name, producing five output values. Third:
[.conference[], .journal[] | .[].name], producing a
single output array. Bottom: the same, but with intermediate
steps expanded within the array constructor.

any deeper analysis. These include https://jqplay.org and
https://jqkungfu.com/. There are also native “interactive jq”
tools [1, 5] and a “VS Code jq playground” extension, which
provide live updating of the results of the full pipeline as
the program is edited, with some autocompletion and docu-
mentation features. All of these tools produce the result of
an entire jq pipeline, and do not give any insight into inter-
mediate values or the structure of the evaluation. However,
they do enable a tighter feedback loop than the traditional
command-line tool, and by leveraging it internally they have
access to the full range of its functionality (other than IO).
The most widely-used dataflow programming environ-

ment is the spreadsheet, which is also a two-dimensional
grid of cells, each of which can contain a value [13]. Spread-
sheets also make (some) intermediate values tangible and
legible; however, the layout of a spreadsheet is cosmetic
rather than semantic, and dependency relations are deter-
mined by formulas not normally visible to the user. In this

system, the layout is a direct representation of the dataflow
in all cases. Several programming systems deriving from or
building on spreadsheets provide additional data types and
further “programming” functionality [3, 6, 18].
Userland [16] is a spreadsheet-like system for dataflow

programming that incorporates some more of the structural
semantics seen in the present system. In particular, Userland
supports Unix pipelines within the environment, with the
same row-of-cells layout and split of the command across
cells at pipe boundaries, which partially inspired the display
here. However, as Unix pipelines are “flat”, there is only ever
a single row of textual cells for each command, with no
branching or multiplicities as introduced by jq semantics.
The tabular representation of ordered data dependencies
here also draws on past work representing concatenative
programs in two dimensions [10].
Muhammad [15] analysed semantics of widespread end-

user dataflow languages with some level of visual interface,
including spreadsheets but not jq. In the terms of Muham-
mad’s taxonomy, jq is a textual sub-language of our system,
and has no N-to-1 inputs; the system we describe has indirect
connections in the form of jq variable bindings, has sepa-
rate program and UI, and represents iteration as vertically-
adjacent cells of concrete iterated values. This taxonomy is
focused on editing and semantics of programs, rather than
visibility of the values or dynamic structure of evaluation. In
the terms of Hils [8], on which Muhammad builds, this work
has a data-driven execution mode; procedural abstraction is
a feature of baseline jq that our system does not expose. In
the terms of Tanimoto [20], this system attempts to have
level 3 liveness, but does not fully reach this level: only some
parts of the program are editable in the “visual” (tabular)
representation, and only in some ways, but modifications
do trigger updates to program evaluation and there are no
specifically separate editing and running modalities.
XQuery [17] is a system for querying and transforming

XML documents, parts of which follow similar principles to
jq. Some visualisation and exploration tools for XQuery exist,
both commercial and in the literature [2]. The XQuery data
model diverges from jq quite significantly, however, so it is
not clear whether transfer in either direction is constructive.
“Big data” pipelines are another case of potentially-

branching dataflow transformations, and tools for debugging
systems like Apache Spark deal with some similar issues [7].
These tools must first and foremost address issues of scale,
while also dealing with arbitrary directed graphs, but allow
exploring derivations and intermediate values. Elements of
this system may be applicable to them in some cases.
Numerous visual data-flow systems use a graph-based

representation of the program, with nodes representing op-
erations and edges representing data flow, such as in Pure
Data [4]. In some cases these nodes are equipped with con-
venient renderers for the the data values produced by them,
including Natto [19] and Calling Cards [9]. While showing

https://jqplay.org
https://jqkungfu.com/

PAINT ’23, October 23, 2023, Cascais, Portugal Michael Homer

data values, the principal structural determiner is the source
code structure, rather than the dynamic structure imposed
by the data values in use. An earlier version of this system at-
tempted to include a graph-based visualisation of evaluation,
as either a substitute or alternative view, but this was found
to be either trivial (for linear pipelines) or incomprehensible
(with any level of branching), with little middle ground.

6 Conclusion
While widely-used, the jq language has uncommon seman-
tics that are not always obvious, and elements of the stan-
dard tool make reasoning and assessing the evaluation of
a program difficult. The syntax is quasi-concatenative, the
semantics feature data-driven branching, and implicit flatten-
ing obscures the origins of produced values. We have shown
a quasi-visual environment that compensates for many of
these limitations, while covering a wide range of jq function-
ality. This environment permits both examining the deriva-
tion of jq outputs from programs and input, and making
commonplace edits to such programs, with direct reference
to the real data.

6.1 Future work
This interactive system offers some opportunities to commu-
nicate further aspects of the jq program. One in particular
noted by industrial observers is performance. The evalua-
tion strategy of jq is opaque, and some constructs may be
much slower than others producing the same result on the
expected input without this being obvious to the user. High-
lighting these, or even providing a performance estimate
alongside the visualisation, could be helpful for users in the
interactive environment where they can explore changes
speculatively. We are not aware of any systematic study of
jq program performance characteristics currently to draw
on for this.
Some other tools have similar execution models to jq,

including both “jq-but-for” tools like fq, sq, xq, and yq, and
elements of XQuery/XPath [17]. The visualisation techniques
described here could be applied to these aswell. Some further-
afield systems, such as .NET’s LINQ or the list monad in
functional languages, could also have this approach applied.

References
[1] G. P. Anders. 2023. ijq: Interactive jq git repository. https://sr.ht/

~gpanders/ijq/.
[2] Jihad Boulos, Marcel Karam, Zeina Koteiche, and Hala Ollaic. 2006.

XQueryViz: An XQuery Visualization Tool. In Proceedings of the 10th
International Conference on Advances in Database Technology (Munich,
Germany) (EDBT’06). Springer-Verlag, Berlin, Heidelberg, 1155–1158.

[3] Glen Chiacchieri. 2018. Flowsheets v2. https://github.com/Glench/
Flowsheets-v2.

[4] Bryan W. C. Chung. 2013. Multimedia Programming with Pure Data.
Packt Publishing.

[5] fiatjaf. 2021. jiq: jid with jq. https://github.com/fiatjaf/jiq.
[6] Monica Figuera. 2017. ZenSheet Studio: A Spreadsheet-inspired En-

vironment for Reactive Computing. In Proceedings Companion of the
2017 ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (Vancouver, BC,
Canada) (SPLASH Companion 2017). ACM, New York, NY, USA, 33–35.
https://doi.org/10.1145/3135932.3135949

[7] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep
Tetali, Tyson Condie, Todd Millstein, and Miryung Kim. 2016. BigDe-
bug: Debugging Primitives for Interactive Big Data Processing in Spark.
In Proceedings of the 38th International Conference on Software Engineer-
ing (Austin, Texas) (ICSE ’16). Association for Computing Machinery,
New York, NY, USA, 784–795. https://doi.org/10.1145/2884781.2884813

[8] Daniel D Hils. 1992. Visual languages and computing survey: Data
flow visual programming languages. Journal of Visual Languages and
Computing 3, 1 (1992), 69–101. https://doi.org/10.1016/1045-926X(92)
90034-J

[9] Michael Homer. 2022. Calling Cards: Concrete Visual End-User Pro-
gramming. In Programming Experience Workshop. https://doi.org/10.
1145/3532512.3535221

[10] Michael Homer. 2022. Interleaved 2D Notation for Concatenative
Programming. In ACM SIGPLAN International Workshop on Program-
ming Abstractions and Interactive Notations, Tools, and Environments.
https://doi.org/10.1145/3563836.3568722

[11] Timothy Jones and Michael Homer. 2018. The Practice of a Compo-
sitional Functional Programming Language. In Asian Symposium on
Programming Languages and Systems. https://doi.org/10.1007/978-3-
030-02768-1_10

[12] jq. 2023. jq is a lightweight and flexible command-line JSON processor.
https://jqlang.github.io/jq/.

[13] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Mar-
garet Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry
Lieberman, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary
Shaw, and Susan Wiedenbeck. 2011. The State of the Art in End-user
Software Engineering. ACM Comput. Surv. 43, 3, Article 21 (April
2011), 44 pages. https://doi.org/10.1145/1922649.1922658

[14] John McCarthy. 1959. A Basis for a Mathematical Theory of Com-
putation. In Computer Programming and Formal Systems, P. Braffort
and D. Hirschberg (Eds.). Studies in Logic and the Foundations of
Mathematics, Vol. 26. Elsevier, 33–70. https://doi.org/10.1016/S0049-
237X(09)70099-0

[15] Hisham H. Muhammad. 2017. Dataflow Semantics for End-User Pro-
grammable Applications. Ph. D. Dissertation. Pontifícia Universi-
dade Católica do Rio de Janeiro. https://hisham.hm/thesis/thesis-
hisham.pdf

[16] Hisham H. Muhammad. 2019. Userland. http://www.userland.org/.
[17] Johnathan Robie, Michael Dyck, and Josh Spiegel. 2017. XQuery 3.1:

An XML Query Language. Technical Report. W3C.
[18] Advait Sarkar, Andy Gordon, Simon Peyton Jones, and Neil Toronto.

2018. Calculation View: multiple-representation editing in spread-
sheets. In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 85–93. https://doi.org/10.1109/VLHCC.
2018.8506584

[19] Paul Shen. 2021. natto website. https://natto.dev/.
[20] Steven L. Tanimoto. 1990. VIVA: A visual language for image process-

ing. Journal of Visual Languages & Computing 1, 2 (1990), 127–139.
https://doi.org/10.1016/S1045-926X(05)80012-6

Received 2023-07-17; accepted 2023-08-07

https://sr.ht/~gpanders/ijq/
https://sr.ht/~gpanders/ijq/
https://github.com/Glench/Flowsheets-v2
https://github.com/Glench/Flowsheets-v2
https://github.com/fiatjaf/jiq
https://doi.org/10.1145/3135932.3135949
https://doi.org/10.1145/2884781.2884813
https://doi.org/10.1016/1045-926X(92)90034-J
https://doi.org/10.1016/1045-926X(92)90034-J
https://doi.org/10.1145/3532512.3535221
https://doi.org/10.1145/3532512.3535221
https://doi.org/10.1145/3563836.3568722
https://doi.org/10.1007/978-3-030-02768-1_10
https://doi.org/10.1007/978-3-030-02768-1_10
https://jqlang.github.io/jq/
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1016/S0049-237X(09)70099-0
https://doi.org/10.1016/S0049-237X(09)70099-0
https://hisham.hm/thesis/thesis-hisham.pdf
https://hisham.hm/thesis/thesis-hisham.pdf
http://www.userland.org/
https://doi.org/10.1109/VLHCC.2018.8506584
https://doi.org/10.1109/VLHCC.2018.8506584
https://natto.dev/
https://doi.org/10.1016/S1045-926X(05)80012-6

	Abstract
	1 Introduction
	2 The jq Language and Semantics
	2.1 Comprehension and Debugging

	3 A Visual Interface
	3.1 Interaction

	4 Implementation
	5 Related Work
	6 Conclusion
	6.1 Future work

	References

