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Figure 1. A very simplistic data quality validation pattern diagram in our language.

Abstract
Data engineering pipelines process large amounts of informa-
tion, and ensuring that the quality and integrity of the data
is maintained throughout is critical for technical, business,
and social reasons. Conventional data quality assurance ap-
proaches require a large amount of fine-grained testing code,
which is laborious, easy to get out of sync, and inscrutable
to non-technical stakeholders. An executable higher-level
visual approach to expressing quality requirements can serve
as a shared representation of these constraints and their im-
plications for all parties, eliminating repetition while increas-
ing accessibility and maintainability. We present a visual
programming language for expressing data quality require-
ments within a pipeline declaratively, structured as a diagram
of compositional data flow, transformation, and validation
steps.

CCS Concepts: • Software and its engineering→ Visual
languages; Data flow languages.
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1 Introduction
Data engineering involves moving and transforming data
from its source to destinations via pipelines for further analy-
sis and use. There are many phases of this process, including
data cleaning, standardisation, obfuscation, transformation,
integration, and storage. Data may be ingested from numer-
ous upstream sources, including both other units within the
organisation and third parties. A key objective of data en-
gineering is to ensure that the data arrives meeting certain
standards and requirements, such as ensuring that all ex-
pected information is present, that each piece of information
is in the correct format, and that data stored in different
locations is consistent, and so on, so that consumers of the
data can use it in a meaningful way. Ensuring that these
requirements are met is what data quality is about.

What data quality means will be unique to its source and
consumption, and deciding on this meaning involves mul-
tiple parties, including diverse stakeholders elsewhere in
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the organisation. In practice, the data quality requirements
are often expressed in program code, which is not easily
accessible to non-technical stakeholders.
There are existing visual languages for data engineering,

which focus on allowing non- or less-technical users to con-
struct pipelines and perform analyses in a “no-code” graph-
ical environment. These systems are generally totalising,
controlling the full scope of the process, but there is an ab-
sence of explicit data-quality validation within them, and by
expressing the many “programming” steps of data pipelines
they become inaccessible to non-technical parties.
More often, these pipelines are constructed using con-

ventional languages, which are also not accessible for non-
technical stakeholders. Data quality can be checked by pro-
gram code, often using libraries built for this purpose.Within
a data pipeline, quality validation can happen at multiple
points, and so quality-checking code is interleaved with
cleaning, standardisation, and transformation logic.

We make two arguments:

1. Visual data-engineering languages should include ex-
plicit quality-checking constructs, as building quality
checks within them currently is overly fraught and
often omitted.

2. For pipelines built primarily in conventional languages,
an executable diagrammatic form structured around
quality checks, with the operational logic continuing to
be built as before, is more useful than a purely textual
representation.

We propose a novel domain-specific visual language for
expressing these quality requirements, and the tasks that
accompany verifying and enforcing them, drawing on prior
work in visual languages, pattern matching, and data en-
gineering. This diagrammatic form is intended to translate
to executable code on the appropriate platforms, while be-
ing at least understandable to both data engineers and non-
technical stakeholders, as well as to software engineers with-
out data engineering expertise. In this system we can express
both the sorts of requirements that are important and some
of the pipeline structure to deal with the verified data, in-
cluding directing output data to either storage or further
processing steps written in other languages.

The contributions of this paper are:

• The design of a visual pattern-matching language for
expressing data quality requirements and the tasks
that accompany verifying and enforcing them.

• A prototype frontend for this language.

To do this, we draw on industrial experience both building
and— crucially—maintaining data pipelines, and integrate
it with existing literature on visual programming and data
engineering. The next section discusses key concepts of data
engineering and data quality for a new reader, and addresses
the state of the art. Section 3 then presents the design of

our visual language, while Section 4 describes our prototype
frontend and potential future work.

2 Background and Related Work
2.1 Data Engineering
Data Engineering involves moving and transforming data
from its sources to destinations via pipelines for further anal-
ysis and use. Data arriving from upstream may be in a va-
riety of formats, including JSON, column formats, or XML,
among other formats, often with heterogeneous structure.
The volume and velocity of data can be significant, requiring
specialised high-throughput and scalable systems and tech-
niques, and it is common to have a polyglot environment
where different points in the pipeline use different languages
or platforms to suit task-specific needs. A data source could
be another unit of the same organisation, a third-party ser-
vice procured by the organisation, or data collected without
direct collaboration from the source at all. Typical data en-
gineering workflows will involve creating and maintaining
innumerable pipelines, each of which involves one or more
sources and destinations, and potentially multiple interme-
diate transformation steps. It may or may not be possible to
coordinate with data producers on any changes desired or
intended, and in many cases the data consumption is an an-
cillary outcome from the upstream perspective: for example,
data may be collected on accounts being created, in order
to analyse the information further, but from the perspective
of the implementors of the account-registration system the
focus and purpose of their task is accomplished once the
account record is committed.

As a result, changes may occur across the upstream system
with impactful effects on the consumer, but with all producer-
side codemade consistent at the same time: a field is renamed,
a data type is widened or narrowed, additional information
is recorded, or made optional. Alternatively, a source system
may be decommissioned entirely, or replaced, such that the
pipeline dries up.

2.2 Data Quality
Data Quality covers a wide range of topics, including statisti-
cal validity, collection methodology, and integrity retention,
and has been defined as “the measure of the agreement be-
tween the data views presented by an information system
and that same data in the real world” [9, 21]. The main focus
in this paper is data quality in the sense of ensuring the
integrity of transformations within a data pipeline, and de-
tecting potential issues upstream that may compromise this;
it addresses data quality dimensions [28] of completeness,
consistency, and validity, among others.

Data quality requirements come from a variety of sources,
and measuring them can be complex and manual [1, 16].
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Some are purely technical: there is code that expects a cer-
tain structure, or a certain type, and will fail if that expecta-
tion is not met. Others are more business-oriented: to ensure
that analytical processing sees an accurate picture, certain
consistency requirements must be met, and the data must
be complete and accurate. Still others are regulatory: cer-
tain data must not be included in analyses, such as data that
identifies individuals (PII) [19], and certain records must be
retained for a period of time. All of these requirements must
be met, and the data engineering pipeline must be able to de-
tect when they are not, and to correctly handle the situation,
preventing bad data from propagating [17]. This validation
must happen at run time: data pipelines ingest data from
a variety of sources, and are generally automated; it is not
feasible to rely on static checking or upstream cooperation.
It must also happen in production: that is where the real data
can be found, and where any problems that arise are critical;
advanced testing, type systems, and static analysis can be
useful, but any such quality checks must be replicated in
production anyway.

2.2.1 WhyNot Just a Type System? Data quality require-
ments encompass more than conventional type systems and
database schemata cover, and the required solutions have
more range and variation than a direct rejection or correct-
by-construction mindset. Simple requirements that a field
exists in the input data, that the field values have a specific
type, or that values in the field are not null, are analogous to
typical type systems and schemata. However, there can be
substantially more complex requirements, ranging from spe-
cific structures expected to be within formally-unstructured
fields (this string must be a valid email address) to multi-
field constraints (the sum of values in fields B, C, and D
must be equal to the value in column A), or requirements
across the entire data batch: the proportion of outlier values
in column A must be within 10% of the proportion across
all batches of data to date. The necessary actions when a
requirement is not met are also varied: log for observability,
reject the batch, reject the row, reject all future data, and are
necessarily expressed through code to address this variety.
Similarly, constraints in database management systems

can express some data quality requirements— but only at the
point where the data has already reached the storage stage.
This is too late for many requirements, and cannot address
intermediate transformations that are never persisted. They
also have very limited ability to enforce more complex batch-
level requirements, such as defect rates, or to support the
various actions that a failed quality requirement may need.
However, where a requirement is at the point of storage, and
where the data is not subject to further transformations, real-
ising the quality requirements as database constraints can be
a useful and efficient approach, but this is an implementation
detail.

2.3 Visual Data-flow Languages
Data-flow or flow-based programming lends itself to graphi-
cal representations [7, 18]. Most often, these follow a “node-
and-wire” approach, where individual boxes represent a
transformation step, and connections between them indicate
the flow of data. There are numerous commercial general-
purpose systems in this mold, such as Simulink [27] and
Pure Data [2]. Such systems give a direct expression of the
processing order and pathways, but programs can rapidly
become overly complex and difficult to read [25].

These languages have a range of well-traversed issues [23],
including user friction, a lack of well-typedness in com-
posed interactions [6], and difficult interactions with typi-
cal software-engineering tools [3]. However, they have also
been upheld as supporting the direct expressions of common
tasks in a variety of fields [13, 14], and domain-specific nodes
have been advocated to ameliorate difficulties for concrete
cases [4, 22].

2.3.1 Existing Visual ETL systems. There are a num-
ber of existing visual languages for extract-transform-and-
load and data analysis pipelines, such as KNIME, Enso, and
Orange. These endeavour to cover the full length of the
pipeline, but have received criticism from practitioners [10]
for both reasons typical for visual languages (e.g. space, main-
tainability, wire-crossing, onerous interaction, only looking
good in a sales presentation, inflated expectations of non-
programmer utility), and those specific to data engineering
workflows: data governance concerns, fostering or requiring
non-modular repetition in the inherently recurring tasks of
pipelines, totalising approaches to integration with other
systems, and fostering neglect of unexpected data.

It is possible to express quality checks in most of these sys-
tems through combinations of standard conditional branch-
ing and filtering, just as it is in textual languages, but made
worse by the inefficient interaction and representation of the
visual system. It is usual to have many requirements to check
at once, and to need all of them to be met in order for the
pipeline to continue. This is a difficult problem to express in
these languages, and encourages only the most superficial or
obvious checks to be made. Quality checks are also inextrica-
bly enmeshed with business-logic connections and difficult
to identify. What we propose here could be incorporated
within existing visual languages as self-contained blocks,
explicitly about asserting quality properties of data.

We argue that data quality validation is necessarily distinct
and meaningfully separate from other conditional branch-
ing and filtering operations, and should be both explicitly
marked as quality checks and expressed in a manner tai-
lored for the needs of quality validation, rather than being
performed using unmarked general-purpose operations. Ex-
plicit data-quality checkpoints are analogous to explicit type
annotations in other situations, both for drawing attention
to themselves and the expectations they embody when they
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are important, and for being easily glossed over when they
are not.

2.4 Data Quality Frameworks for Textual Languages
Data quality frameworks such as Great Expectations [20]
and Deequ [24] provide a framework for expressing these
requirements, but require meticulous expression of them
in program code. It is easy for the code to become out of
sync with the requirements, or with other code that depends
on the same data. They are also not designed to be used by
non-technical stakeholders, and are not easily translatable
to other languages, so the polyglot environments that are
common in this space are not well supported. These frame-
works focus on local enforcement of requirements, and can
be difficult to apply in the context of a distributed pipeline,
operating in a run-time ephemeral environment decoupled
from the data storage.

In the next section, we outline the domain-specific visual
language we have designed to express these requirements,
and to connect to the necessary proprietary systems in other
languages that implement the actual behaviour of the data
pipelines in these contexts.

2.5 Pattern Matching
The task of validating data quality is very reminiscent of
pattern-matching, a common feature in functional program-
ming languages that has more recently been incorporated
into object-oriented languages [5, 8, 12, 15]. Pattern match-
ing is fundamentally about taking an unknown (compound)
value and inspecting it dynamically to establish its structure
and properties, and then branching code execution accord-
ingly. In common patternmatching, multiple patternsmay be
nested and matching all of them is required to succeed. Data
quality checks have some additional needs beyond common
pattern-matching tasks. In particular:

• There are usually many different requirements to be
applied at once to the same data.

• The values in question are always compound values,
with many internal fields, and have no nominal label.

• For any individual field/column, there are likely to be
several simultaneous requirements.

• Quality requirements span both individual data items
and the entire batch of data, and may both be required
at once.

• Bespoke application-specific requirements may be nec-
essary to express the required conditions, not only
type, structural, and typical dependent checks.

For our purposes we need a powerful extensible pattern-
matching system akin to those of Scala [5], Grace [11], or
F# [26], but with a visual representation that is at once ex-
pressive enough, sufficiently compact to be tractable, and
broadly comprehensible.

3 Data Quality Validation in Visual Form
Our diagrams have three main audiences:

• data engineers, who build the pipelines and must be
able to specify and rely on data quality;

• non-technical stakeholders, who must understand that
their requirements are accounted for;

• and computers, which must carry out the necessary
work to execute the intent of the first two.

All three of these are important, but in particular we argue
that executable diagrams are crucial: not onlymust the people
understand and manipulate the diagrams, but it is vital that
the diagrams not be able to get out of sync with the code
that implements them if they are to be relied upon.

Existing visual tools for these pipelines do not incorporate
explicit data-quality validation, and most pipelines are still
built using conventional languages and tooling. What we
propose does not replace any of this: rather, it is a language
mechanism for expressing these validation requirements that
could either be incorporated within another visual language,
or layered on top of conventional tooling. Either way, the
transformation steps that “do the work” can remain as-is.
However, quality checking, which requires laborious nested
conditionals in existing visual systems, or else is delegated
to opaque blocks of conventional code, can be expressed
concisely with a careful design of a node with that purpose.
These diagrams do not replace the whole pipeline, and

do not replace the traditional code with which the pipeline
stages are currently built, or existing visual languages that
do not incorporate data quality validation in this way. Rather,
they are a new layer of abstraction, which can be used to
express the data quality requirements and the tasks that
accompany verifying and enforcing them, while delegating
the body of the work to where it is currently implemented.
What has moved is the implementation of the data-quality
requirements: rather than being implemented in code as a
preamble to each implementation, repeated for each stage
consuming the same raw data, they are expressed in the
diagrams, and the code is generated from them.

This domain-specific visual language follows a “flow chart”
or “nodes and wires” structure, but with complexity concen-
trated within the nodes. It is necessary to be able to express
the gamut of data-quality requirements, and to express a
large number of such requirements concisely in one place. It
is also necessary to express where data should be directed
after validation, and potentially in turn which quality re-
quirements apply to the results of such a transformation
step.
The following subsections introduce the major nodes of

the language, with illustrations of the kinds of cases they are
intended for.
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Figure 2. A validation phase and two single classifications
below. The first has three specified requirements. The “name”
field is required to be a string, the “position” field non-null,
but the “team” field only to exist. If all of these criteria aremet,
data will flow to the right. Otherwise, the next classification
below will be assessed, and require that the “position” field
not exist.

3.1 Validating and Classifying
An arriving batch of data has no known structure initially,
but one or more structures will be expected and acceptable.
The “validation” phase attempts to classify incoming data
against given sets of criteria. Below the “Validation” node,
several classifications can be defined, which are assessed
from top to bottom with the first successful classification
determining the validation result.

The “classification” nodes are where the most significant
part of our DSVL operates. Many different requirements
may be part of the same classification, and all must be met
for that classification to be successful. Each classification
node corresponds to a single “case” in a traditional pattern-
matching system, and the combined requirements are akin to
recursive destructuring matches. The expectation is that any
given classification will specify constraints on several fields
of the data, potentially with multiple specific requirements
each, but even a single requirement may be useful.
The available types of requirement are discussed in the

next section. Figure 2 depicts a simple validation node. Its
topmost case has three basic requirements. All of the require-
ments must be satisfied for the case to match, and when they
are the diagram indicates where this batch of data should
be directed via the connection to the right. Otherwise, the
case connected below is tried, and so on, so the vertical
structure represents the “or” pathway, also as in common
pattern-matching syntax.

Most often, the topmost case will be the expected structure,
and no further inspection will be required in the common
situation, and there may even be only a single case to handle.
However, it is possible that there are multiple acceptable

structures, for example when both a historical and a new
format is processed by the same pipeline. In that situation,
the different formats may be directed to different places for
normalisation, or may be sent directly to the same destina-
tion. It may also happen that specific kinds of requirement
failures are to be treated differently: for example, an empty
value may at times only require logging, and the data can
continue through the pipeline regardless, or it may be amore
severe kind of failure than others for this particular pipeline;
either situation can be addressed in this way.

If no case matches, the match fails, and one of the failure
modes is engaged.

3.2 Requirements
There are three major families of requirement, each con-
straining a different aspect of the data. The three deal with

• A single field’s existence and properties, such as its
type.

• Properties of an entire column of data, e.g. uniqueness.
• Properties of a multiple fields in combination, such as
summing to a particular value. This is the most varied
type of requirement.

Each of these is discussed below, and alongside, additional
affixes can be applied to specify the nature of the constraints
(for example, type, within a range, or non-null). We specify
these below the top-level requirement. Multiple of these may
be applied to a single requirement, to specify both a field’s
type and its valid range, for example.

3.2.1 Field Existence and Properties. The simplest re-
quirement is that a field or column by a particular name
must exist in the data. This is liable to be the most com-
mon requirement in most cases, and consequently it has the
simplest representation: solely the name of the field.
In the simplest case, that is the entire requirement, but

often there will be other needs, perhaps most commonly
requiring a particular type. We represent this constraint as “:
type-name”, placed below the field name. Figure 2 shows this
value constraint on the “name” field. Another common need
is to ensure that the field is not null, seen on the “position”
field, or to require a numeric field to be greater or less than
a specified value, shown with e.g. “< 100”.

Many other such constraints are possible, including highly-
bespoke ones fitting within a particular system. For example,
a string field might be required to be a valid email address, or
to contain an ISBN, a number may be required to be a valid
postal code, or a date might be required to be a weekday.
In any case, a field requirement is assessed against each

item in the data individually. If any of the items do not have
the field, or if an additional constraint is not met, then the
requirement fails and so will the classification it is a part of.
However, data cannot always be perfect, and at times it is
useful to indicate a level of failure that is acceptable. Figure 3
shows a field that is required to be at least 75% non-null.
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Figure 3. Numerical field required to be greater than a spec-
ified value, while another one can be no more than 25% null.

Figure 4. Classification for columns, each with two specific
constraints. The column is indicated by name between the
paired lines, while the affixes appear in the same fashion as
for individual fields.

A field may also be required not to exist, represented by
the column name alone with a line through it. In this case,
there are no further affixes available.

3.2.2 ColumnProperties. Other requirements may apply
to the entire column of data, such as uniqueness, being in
ascending order, or having a limited min-max range.
These properties can only be assessed across the entire

batch, and not for individual data items. Requirements across
the column are indicated by double vertical lines around the
name, and the additional constraints are placed below in the
same fashion as for individual fields.

Figure 4 shows two column requirements:
• The “transaction” column must contain unique values,
and they must be in ascending order.

• The “amount” column must sum to zero, and the min-
imum and maximum values must be less than 1000
apart.

Most affixed constraints for columns are not applicable to
individual fields, and vice-versa, but some may be shared.
A particular form of this requirement is that there must

be enough data points in the batch (for example, to ensure
statistical significance). In this case, the column itself is not
relevant, but any ubiquitous column may be specified.

3.2.3 Multi-field Combinations. Some requirements op-
erate over multiple values within a row of data. For example,
there may be multiple percentages that must add to 100%, or
one may need to be less than another. These requirements
can be the most varied of all, and take two main formats.
In the first, the values of two or more columns may be

combined to form a new value, and that value may then be
constrained in the same way that an individual field is. In

Figure 5. Requiring the sum of three columns to be 100%.

this case, the fields involved and the combining operation
form the top-level requirement, and the constraints on the
resulting value laid out below. For example, Figure 5 shows
that “work”, “play”, “sleep” must sum to 100%.
The other format is that the values of two or more fields

may be related to one another somehow: the value of one
is found in the other, one is less than the other, and so on.
Such a requirement has no value itself, but only succeeds or
fails based on the input, so there are no affixes available.

3.2.4 Named References. There will often be sets of re-
quirements that are reused in multiple places, to ensure that
their qualities are preserved throughout processing. To avoid
repetition, it is possible to give a name to a collection of re-
quirements, and then refer to that name in multiple places.
These are akin to type declarations, albeit of the very depen-
dent nature that these classifications impose.

Within the diagram, these definitions are placed off to the
side, separated from the main flow of the diagram, with a
name above. Within a classification, the name given to the
collection is used as a single element, and incorporates by ref-
erence all of the defined elements. Additional requirements
may be given around it as usual.
As well as being more concise, these can ensure that the

same requirements truly are applied in multiple places, that
they are consistent, and that any modifications reach every
relevant place.

3.2.5 Aggregate Values. Columns may sometimes have
compound types, like lists, sets, or dictionaries. There can be
data-quality requirements on the values within such struc-
tures, and on the structure itself.
Requirements on the inner values must be encapsulated

within a named definition, and a requirement can then apply
that definition across the compound value’s contents. This
prevents the requirements from becoming arbitrarily nested
and incomprehensible, as could happen if they were directly
included in situ.
Requirements on the aggregate value itself, such as the

number of elements, are expressed via affixes on a standard
field requirement. These affixes will overlap with those rele-
vant for all-of-column requirements, but some will only be
suitable for one or the other.
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3.3 Transformation
Transformation phases represent the places where code runs
that manipulates the data, rather than validating it. They
may be connected to validation phases on either side, but we
do not define exactly how they should work here: perhaps
many nodes within a totalising visual system, or only a refer-
ence to textual code. The user interface of this is not material
to the design at this level, and we envisage concrete imple-
mentations making different choices for how to represent
and/or generate code for these phases.

3.4 Expressiveness
We do not focus on anything outside of the data-quality
elements themselves here, which is out of scope for this
work. The structure of the language supports expressing any
requirement of a single value, or of a single column in a
batch; multiple groups of requirements can then be given
different pathways, but at present always disjoint ones (no
duplication). Any transformations of the data are currently
left outside of this language, incorporated by reference only.
These are deliberate choices for maintaining the scope of
this work, but we do not rule out extensions in the future.

4 Future work and Prototype
In addition to purely checking for data quality, the same
quality requirements may be suitable for other purposes. For
example, it may be desirable to divert or halt the flow of
data based on some properties expressed in this notation.
This section explores possibilities for this, and introduces our
front-end prototype and plans for usability experimentation.

4.1 Separation
At times it is necessary to route data items based on some
examination of them, rather than to reject or pause process-
ing. The validation steps from Section 3.1 only decide on a
yes or no, but do not allow for allowing some of the data
to continue. For example, it may be that the rows meeting
quality requirements should continue, while others are set
aside for manual inspection. In other situations, there may
be multiple pathways to take based on properties of the data.

A “Separation” phase has the same structure as Validation,
but operates on the level of individual data items: if an item
satisfies a case’s requirements, it is routed to the destination
on the right (batched up with other rows that match the same
case), while non-satisfying rows are examined by the case
below. Figure 6 shows a separation phase with two cases, a
standard path for values with a non-null position (expressed
in the same way as validating the same property), and a
different path for those with a null value there.

All of the same requirements are available, except for those
relating to the batch as a whole and to entire columns, and
they are used and represented in the same way.

Figure 6. This Separation phase sends data with a non-null
position on for further business-logic processing (elided).
It sends any other data with a position key to storage for
inspection by the data engineer, while values without even
that are discarded here.

4.2 Quality Dams
Beyond simply measuring the data quality, we suggest one
further feature for systems concerned with preserving the
quality of data: the ability for a Validation phase to stop the
flow indefinitely if a serious quality issue is detected. We call
this a “quality dam”, and it will ordinarily allow data to flow
through uninterrupted. If closed, however, it will enqueue all
incoming data and not permit any further processing. These
sorts of queues are common in practical data pipelines, for
both semantic and performance reasons, but we suggest that
explicitly tying them to quality requirements is a good idea.

For example, a Validation phase may detect a serious prob-
lem with a batch of incoming data suggesting an unantic-
ipated upstream change, or it may be crucial that the data
be processed in a particular order. In this case, permitting
future batches of data to flow through the pipeline when
they happen not to fail the same quality requirement would
lead to unreliable analysis or other negative outcomes.
A Validation phase or one of its classifications should be

able to trigger the closure of this dam explicitly in order that
a data engineer can intervene before further automated pro-
cessing. Implementing this sort of backlog on an ad-hoc basis
is unreliable, but quality validation is the precise situation
that ought to trigger it, and these— or something similar—
should be part of any structured data-quality system.

4.3 Data Cleaning and Standardisation
While this paper has focused on the later stages of data
pipelines, these tools could also be useful in the data cleaning
and standardisation stages. Inspecting incoming data and
performing cleaning and standardisation operations, such
as removing PII or standardising values, could be aided with
the Validation or Separation phases to detect when these
operations are needed.
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Some data cleaning and standardisation operations align
well with the requirements expressed in this system, such as
null value handling, simple column renamings or deletions,
or additional columns derived frommulti-field combinations,
or normalisation of values. For both space and focus we
limit this work to after the initial cleaning phase, but simple
reshaping operations employing elements of this notation
are a possible extension.

Indeed, in the case of some quality requirements there is an
obvious step to make them true, such as case normalisation,
or removing a column that should not exist, while in others a
small addition could specify a default value to use. However,
some cleaning operations can bleed more into the area of
the pipeline’s business logic, and are often not relevant to
some of the stakeholders, so we have some caution about
incorporating them.

4.4 Prototype
We have constructed a front-end prototype of a diagram edi-
tor for this language, available on the web at http://ecs.vuw.
ac.nz/~mwh/demos/dsvl-deq/ and used to create our exam-
ple figures. This prototype is able to simulate the evaluation
of a pipeline with these validation and separation phases,
and a small number of additional processing steps for ease
of testing. Data can be imported as a JSON file containing
an array of objects, and the pipeline can be exported to a
separate JSON file for consumption by other tools interfacing
with the proprietary backends.

4.5 User Research
The key next step for this work is to conduct user studies
with appropriate audiences to measure which elements of
the language are useful, or not. We have not yet begun this
process and present this work as a preliminary step towards
a more complete system.

5 Conclusion
Data engineering pipelines must preserve the quality of data
throughout, and detect introduced flaws in data as early as
possible. Expressing these quality requirements in existing
systems is either awkwardly complex, or inscrutable to the
non-technical stakeholders who participate in determining
the needs of the application— or both. A tailored visual lan-
guage for expressing these quality constraints in executable
diagrams can ensure that they are easily understood, always
up-to-date, andmore readily expressed than existing systems.
We presented the design of a system for pattern-matching
quality requirements over data batches in a principled fash-
ion, along with some potential extension applications of this
approach, and argue that quality requirements are an ap-
propriate place for comprehensible boundaries within data
pipelines.
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