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Figure 1. A small concatenative program in the midst of editing in the interactive two-dimensional notation prototype.

Abstract
Concatenative languages use implicit argument passing to
provide a concise expression of programs comprising many
composed transformation functions. However, they are some-
times regarded as “write-only” languages because under-
standing code requires mentally simulating the manipula-
tions of the argument stack to identify where values are
produced and consumed. All of this difficulty can be avoided
with a notation that presents both the functions and their
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operands simultaneously, which can also ease editing bymak-
ing available values and functions directly apparent. This pa-
per presents a two-dimensional notation for these programs,
comprising alternating rows of functions and operands with
arguments and return values indicated by physical layout,
and a tool for interactive live editing of programs in this
notation.
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1 Introduction
Concatenative programming languages are those where two
subprograms may be composed simply by concatenating
their code: the output(s) of one program will automatically
and implicitly be the input to the next [6]. A program is a se-
quence of named function calls, with no explicit arguments,
named variables, or control structures. The most widely-
known concatenative languages are Forth, PostScript, Fac-
tor, RPL, and Joy, all stack-based, but other approaches to
concatenation that do not align with stack machines also
exist, such as Kihi and Om [3, 12]. Most often, these follow a
postfix notation, where each function called consumes its ar-
guments from the stack put there by the previous functions,
and pushes its outputs onto the same stack. In this way, con-
catenative languages are extremely concise for expressing
pipeline transformations: appending a further transforma-
tion step is just appending another function name. They
can be seen as imperative manipulation of a stack, compo-
sition of functions, or an expression of a data-flow graph,
all true from a certain point of view, and foster a style of
programming built around identifying and defining these
transformational steps. However, concatenative languages
are sometimes seen as “write-only” languages, as compre-
hending novel code requires knowing the behaviour and
arity of the functions it uses.

In this paper, we present a new interactive representation
of concatenative programs, where function inputs, outputs,
and relationships are tangible and explicit. This representa-
tion is two-dimensional, displaying both the functions and
the stack contents in order, and manipulated by drag selec-
tion. The values on the stack are foregrounded in editing
operations, so it is always clear which are available and
where they come from.

The contributions of this paper are:

• Anotation for concatenative programs, where the func-
tions and the stack contents are displayed in two di-
mensions.

• A model for interactive editing of programs in this
notation.

• A prototype tool where the user can interactively edit
a program, and see the effects of their changes in real
time.

The next section gives background on concatenative pro-
gramming for a general audience, and highlights some of the
challenges this modality presents. Section 3 introduces our
new two-dimensional notation for representing these pro-
grams. Section 4 describes the model for editing programs
in the notation, while Section 5 illustrates a prototype tool
putting that into practice. Finally, Section 6 positions this
paper among related work, and Section 7 concludes.

2 Background
Languages like Forth aim to be close to a machine execu-
tion model, where the stack is a result of parameter-passing
convention. Other concatenative languages, such as Joy, can
be much higher-level, leaning more to the functional pro-
gramming style [31]. Still others follow non-stack models
entirely, such as Kihi [12]. In this paper we concentrate on
the stack-based models, and will use a simple Forth- and
Joy-like language to illustrate the concepts.

This section aims both to introduce an unfamiliar reader
to the basic facets of concatenative programming, and to
highlight the weak points that our interactive notation aims
to address. A reader with familiarity with concatenative
programming may wish to skip to Section 3.

2.1 A Toy Stack-Based Language
A program is a sequence of words. A word is the name of
a defined function such as “add”, or a literal value such as
“15”. A small program could thus be 15 7 add. This program
contains three words, each of which identifies a function.
The program is executed from left to right, processing

each word one at a time. For each word, the corresponding
function definition is found, and as many arguments as it
requires are popped off the stack. The function is evaluated,
and any outputs that it produces are pushed onto the stack.
The next word is then processed in the same way, with the
new stack values in place.

A literal identifies a nullary (zero-argument) function that
pushes the value of the literal. The first step of executing
this program is thus to push 15 onto the stack. Following
that, the next function pushes a 7 onto the stack.
The next function, “add”, pops two values off the stack,

adds them, and pushes the result back onto the stack. The
final result of 22 is the only contents of the stack at this
point; we may want to further process the result, perhaps
to halve it, or square it. We could append the program “2
div” on the end to halve the result: the “div” function takes
two arguments, just like “add”, but one will already be there.
This is why these languages are known as concatenative. The
steps of executing that program are as follows:

Remaining program Stack (left is top)
15 7 add 2 div
7 add 2 div 15
add 2 div 7 15
2 div 22
div 2 22

11
Our program now is becoming unwieldy, however. We

can shorten it by defining our own functions for some of
these operations. Because all arguments are passed implicitly
on the stack, we can simply splice part of our program out
into a new function defined as exactly the words we have
replaced, and put the new function words in their place:
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halve : 2 div
square : dup mul
15 7 add halve square

In many respects, this is clearer than the long form, but we
now have three functions that we must understand the input
and output arity of in order to comprehend the program.
There is more background knowledge required that is not
apparent in the visible syntax of the program, in the way that
more typical applicative and imperative languages clearly
delineate function arguments and which values have been
returned.

2.2 The Stack
A function always consumes its arguments from the top of
the stack, expecting a number of values of particular types
and meanings.
Sometimes the values on the stack are not in the desired

order. For example, the parameter order of subtraction is
semantically meaningful: it expects the subtrahend to be on
top of the stack, and the minuend underneath it. A program
may have produced the values in the opposite order, or code
may be inside a function that uses a constant minuend and
takes the subtrahend as an argument (e.g. distance-from-100).
Stack languages will include stack-manipulation operations
for these cases, or cases where a value is needed more than
once. Common operations include “swap”, which swaps the
top two values on the stack, and “dup”, which duplicates the
top value on the stack.
These stack manipulations are sometimes necessary, but

can also make the program execution more challenging to
follow. In the worst case, reading the program turns into
a game of Three-card Monte, where the reader must keep
track of where the values on the stack came from.

3 A Two-Dimensional Notation
The linear expression of concatenative programs is concise,
but not explicit about which arguments and outputs are
in use or connected with which functions. It shows only
the function calls, without any view of the expected stack
contents or which values are being consumed as arguments,
or where they came from. We can display our well-formed
programs differently: as well as showing the functions in
use, we can display their stack effects, and the dependencies
between functions, in a two-dimensional fashion.

The representation we propose is a grid of cells, with each
cell representing either a function or a value on the stack.
Immediately below each function call, one cell will appear for
each of its outputs, spaced across the width of the function.
For each function that consumes arguments, it will stretch
below the cells for all of those arguments. The rows thus
alternate between functions and stack items, and data flows
vertically downwards between functions.

15 7 2
15 7

add 2
22

div
11
dup

11 11
mul
121

Figure 2. The program from Section 2.1, “15 7 add 2 div dup
mul”, in the two-dimensional notation. Functions are on a
grey background and stack entries on white; execution flows
top-to-bottom.

Revisiting our example program from Section 2.1, “15 7
add 2 div dup mul”, we can see it in the two-dimensional
notation in Figure 2. This illustrates several elements of this
representation:

• The “add” function has two arguments and one output.
It thus spans two cells above, but only one below.

• In contrast, “dup” takes one argument and has two
outputs. The space below it is divided in two.

• All nullary (0-argument) functions are in the top row.
• The “div” function uses outputs of both “add” and the
nullary “2”. The stack item cell for the value “2” thus
spans multiple rows.

• The available stack values are visible, in order hori-
zontally, and data dependencies between functions are
visible by following the table vertically.

• The “square” operation, “dup mul”, is the last four rows
from our table – it is still concatenative.

Within a single row of stack entries, all of the values are
(or could be) available at once. Adjacent cells represent two
values that could be given as arguments to a single function,
regardless of where they come from.

Any program in the linear concatenative language can be
transformed into the two-dimensional representation by sim-
ulating its stack and the data dependencies exposed between
functions.

3.1 Stack Entries
Our examples so far have featured only integer values on the
stack for concision and easy identity. However, the notation
is generic in two ways: one is that it can show the types
of argument and return values instead of concrete values.
For many uses this may be the more common case, as the
types are often more important than the values, or there
are no known values at the time of writing. As each func-
tion has a known arity and type signature to the language
implementation, these can be readily displayed at all times,
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“hello” 5 “no”
string int string
dup

string string int string
(will reuse later)
string string int string

length
string int int string

equal
string boolean string

swap
string string boolean
(Return the first string if it has the
given length, or otherwise the second)
string string boolean

choose
string

Figure 3. Representation of part of a program with types
(white background) and comments (green background and
parentheses) displayed.
The choose function returns its first argument if the boolean
is true, and the second otherwise, so this program returns
the string on the left if it has the given length, and the string
on the right otherwise.

saving the user from needing to remember them or refer to
the documentation. Figure 3 shows a program using various
data types.
The other is that the notation can show any value—not

only other typical base data types like strings and booleans,
but more complex values like associative arrays, images, or
graphs (of both kinds). These displayed values can be useful
not just for debugging, but also for their own sake: the goal of
a program may be to produce certain visual representations
of a computation result, and they can be immediately and
tangibly displayed complete with their provenance. This is a
powerful way to communicate the results of a computation
to a human audience, and to provide a visualisation of the
computation itself. For space, we do not include an example
of this here, but we discuss it further in Section 4

3.2 Comments
The two-dimensional representation is also useful for anno-
tating parts of a program with comments. In this model a
comment always applies to a range of stack entries, rather
than a line of code, and this connection is made explicit. The
comment acts as an identity function semantically and its
text is displayed below the range of cells just like a func-
tion. Figure 3 shows a program with two comments (green
background), one stretching across the entire row, and one
applying to only two stack entries.

4 Interaction
With this representation, new editing interactions with con-
catenative programs become available. In particular, because
the stack is visible, with all simultaneously-present items
adjacent and in order, it is possible to identify and select a
contiguous range of them in a single row. The system can
then present the user with available options: functions able
to consume these arguments, stack-manipulation operations,
the ability to define a new function to process these values,
and so on. A vertical or rectangular selection is also possible,
to identify a composed chain of functional data dependencies
that could be spliced out and abstracted into a new function.

For editing, it may be useful both to display concrete val-
ues for stack items, and to display the types of values that
are expected. Within a function, there may or may not be
concrete values known, and in different circumstances either
type or value may be more useful, so both should be available
where possible.

4.1 Calling Functions
Each stack entry is in an individual cell of the grid. Contigu-
ous ranges of cells represent adjacent stack items. A hori-
zontal dragging operation can thus select a block of stack
entries. If these items have not already been consumed by
a function (that is, they do not have a function cell below
them), and the rightmost argument is the rightmost output
of another function (that is, it would be on top of the stack
at this point in the linear program), then they are available
to be transformed by a function.
Because the selection identifies exactly how many argu-

ments there are, and what data type they are, the system
can present the user with a list of functions that could make
use of the selected items, as seen in Figure 1. This is differ-
ent to the usual approach in both textual and visual editing
paradigms of first specifying the operation, and then identi-
fying the operands to apply it to.
For example, if the user selects a range of two integers,

a menu of functions able to accept those arguments can
appear:

int int int int int int int int
add mul equal swap
int int boolean int int

Once the desired function is selected, the system can insert
the new function call below the arguments and populate the
grid with its outputs, ready for further selection.

4.2 Defining Functions
Alternatively, the user can select to create a new function
to process these values: a separate editing view can then
open up for this new subprogram, and a call to the newly-
defined function be inserted. This subprogram has the same
affordances as the parent program. The parameters are ar-
rayed across the top, above the first functions of the body,



Interleaved 2D Notation for Concatenative Programming PAINT ’22, December 05, 2022, Auckland, New Zealand

and whatever stack items remain at the bottom row are the
return values of the function.

int string
halve length
int int

equal
boolean

6 “hello”
halve length
3 5

equal
false

If concrete values are available from the parent program
at the point of use, they can be used to provide example
values for the editing process, as in example-driven program-
ming [2, 25], or the user can work with types alone. Addi-
tional nullary functions to produce values for use within the
function can be added on the right-hand end of the top body
row, producing their outputs after the parameter values.

int string
halve length false
int int boolean

The function cannot accidentally consume more arguments
than intended, because the editor is presented only with the
closed initial stack that was selected by the user originally:
from the point of view of this function editor, no other stack
items exist, and when adding a new function call the user
can only select from available arguments. The return values
of the function will be whatever is on the final row; these
may be outputs of functions used above, or could be unused
argument values remaining unchanged.

Because the editing operations change the function body
in steps, the function may temporarily be in an inconsis-
tent state. For example, the function may need to return a
single value, but two are left on the stack at the bottom, be-
cause another function call combining the two values has
not been added yet, or a previous one has been removed and
is pending replacement. While the system can highlight this
discrepancy for information, it is not a blocking error and the
user can proceed to complete the function definition. Only
when eventually saving the function does this inconsistency
need to be resolved before continuing.

4.3 Replacing and Removing Functions
The cells for individual function calls can also be chosen,
and there can be multiple options available depending on
the circumstance.

Because both the input and output types are constrained
at this point, other functions with the same signature can be
presented to the user to choose from, and the original call
replaced with the selection.
If the function outputs are not used anywhere, or are

the same as its inputs, it can be removed entirely, and the
argument values allowed to flow through.

If the function is user-defined, its body can be spliced into
the program at this point in place of the function call. The
body could then be edited to tailor it to the specific use case
in play.

4.4 Stack Manipulation
The “swap” and “dup” operations, and other stack manipula-
tion operations, can be made available in the same way as
other functions. These will be available for any selection of
stack items of the appropriate size.

The system can be slightly cleverer as well when the user
selects a range of arguments. In addition to listing func-
tions able to consume that sequence of values, it can offer
multiple-function sequences involving stack manipulation.
For example, if there is a “character-at” function wanting
first a string and then an int, but the user selects a sequence
of an int and then a string, the system can offer to swap the
two items first:

int string
swap

string int
character-at

char
Selecting this option would insert both functions into the

program, adding multiple rows at once. This affordance can
reduce the amount of manual stack manipulation required
by the user, at the expense of listing more options to wade
through in the situations where it is not desired.

4.5 Vertical Ranges
A vertical selection must mark out a pipeline of functions
processing each other’s results. There are subtle constraints
on exactly what can be selected in this way. For example,
it must not have a “ragged” edge on either side— it must
consume all of the outputs of each function in the selection—
and it must be as wide at the top and the bottom. However, a
selection that does achieve this corresponds to a sequence of
words in the linear representation of the program that could
be spliced out and abstracted into a new named function.

4.6 Exploratory Programming
The affordances described above are designed to support
exploratory programming, where the user is trying to find a
solution to a problem by trying out different approaches [14,
26]. When concrete values are displayed, it is immediately
apparent what data is available, and possible to try out dif-
ferent combinations of arguments to see which operations
are possible with them.
These can be particularly useful when the data types in

use are very rich. For example, if an item has a record type,
the user can choose to display the evaluated program steps,
and see the values of the individual fields of the record. They
can then select one of those fields interactively, and have the
system generate and insert a function that extracts that field.
Still-richer types, like “email” or “photo album” can also

be exposed for direct programatic manipulation. Whatever
operations are available on these, alone or in combination
with other values, can be discovered, employed, and their
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products observed and followed up on in the sameway as any
typical data type. Displaying the results of such exploration
on such extremely rich valuesmay be the point of the process,
or theymay be processed as steps of a larger task. Used in this
way, there are parallels to the paths of Obenauer’s “itemized
operating system” [19].
Alternatively, the system could be configured to display

data such as a sequence of numbers as a chart. Manipulating
earlier functions in the pipeline (using replacement as in
Section 4.3) or altering constant values could then change
the rendered graph. Regardless, these rich values are integral
parts of the program display; in this (sub-)approach, the
program sits somewhere between a classical concatenative
or dataflow program and a “notebook”-style system like
Jupyter, or various literate programming environments.

4.7 Backtracking
Thus far, we have focused on the “forwards”, data-driven
direction: where the user has some values and wants to
process them. The interactions we describe can also work
with some modification in the reverse direction: rather than
selecting a range of argument values, they could select a
desired return type or types, and functions able to produce
that type enumerated. In this case the program would grow
upwards, choosing the final result stack type first, and then
working backwards towards the original arguments.

For example, the user could start out desiring to output
a string and a boolean. They could drag across both types
to find any functions that produce those outputs, or select
just the string to see what could create it, perhaps selecting
a “repeat character n times” function. Now they would have
a boolean, a character, and an int to satisfy, and could again
select a range to see what available functions produce them,
or to define a new function handling some part of the work.

This reverse direction follows exactly the same principles
and affordances as the forwards direction, and potentially
both could be in use at once (even simultaneously as a “meet
in the middle” approach).

5 Tool Prototype
There is a prototype implementation of the system avail-
able online in a web browser at http://ecs.vuw.ac.nz/~mwh/
demos/p22-2d-concat/. Figure 4 shows a screenshot of the
prototype in action, editing the example program from Sec-
tion 2.1. It includes full support for most of the affordances
and features described in the paper for working with concate-
native programs.1 Areas of limitation include backtracking,

1It also supports other uses of the grid flow that are not compatible with
conventional concatenative languages (and do not have a corresponding
linear textual representation). We do not discuss these in this paper, but
they result from relaxing some of the constraints described in previous
sections, and type extensions, including some of the potential extensions
from Section 6.1. Using the system with concatenative programs behaves
as discussed.

Figure 4. The prototype in action, editing the example pro-
gram from Section 2.1. The lighter grey cells are values,
selectable by dragging horizontally to choose a range of ar-
guments. The darker cells are functions. At the top, tabs
allow selecting different programs or functions to edit.

which is not supported, and vertical splicing, which works
only in some circumstances.

The system permits entering a program in the traditional
textual concatenative form and rendering it into the grid
notation, using any of the pre-defined functions. It will ani-
mate the words moving from linear to grid notation and back
in order to make clear the relationship between the two, in
the Tiled Grace [10, 28] tradition of multiple-representation
block-based programming environments. It also permits edit-
ing programs and functions within the grid format using the
dragging affordances described, and adding nullary functions
to the program with the plus button on the top row. Multiple
programs and functions can be open at once, accessible via
the tab bar at the top.
Dragging across type/value cells (that have not already

been consumed by a function below) pops up a menu of
available functions accepting those arguments, and selecting
a function will add it to the program. Clicking on a function
cell will produce a radial menu of options for that function,
including replacing it with another similarly-typed function,
removing it, or going to its definition as applicable.
The right-hand sidebar displays the types on the output

stack, and the parameter types when editing a function. Red
outline markings indicate a type error, most notably when
editing a user-defined function that is in use elsewhere and
has specific return types required. Elsewhere in the sidebar
additional information relevant to system extensions under
trial is displayed, but this is not relevant to the core described
in this paper.

The grid display can be switched between displaying types
and concrete values using the toggle below the tab bar. For
complex types, this can make the per-cell display quite large.

A notable implementation limitation of the prototype ap-
pears in the case of extreme nesting, where a value is con-
sumed by many layers of function having multiple outputs.

http://ecs.vuw.ac.nz/~mwh/demos/p22-2d-concat/
http://ecs.vuw.ac.nz/~mwh/demos/p22-2d-concat/
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For example, rendering the program “1 dup dup dup dup dup
dup dup dup dup dup” results in the rendering of the first
row failing to cover the full row. This is due to the use of
HTML tables for the grid in this version, and the approach
used for dividing cells when a function has multiple outputs:
browsers do not allow a cell to span more than 1000 columns.
With ten or more two-way splits below a single cell this limit
is passed under the method in use. This is a limitation of the
current implementation, and not a fundamental limitation of
the approach. Practical programs rarely encounter this issue,
but it is easy to produce pathological examples. We note it
explicitly because it is otherwise mystifying to encounter.

6 Discussion and Related Work
In this section we will discuss extensions and limitations of
our approach, and position it amongst related work on both
concatenative languages and visual programming.

6.1 Further Extensions
We have focused on support for traditional concatenative
programs above, but there is some more generality in the
grid approach. We note a couple of ways in which the system
could be extended, but do not focus on them in this work.
While every linear concatenative program can be repre-

sented in the grid notation, there are grid programs with
clear meaning that do not correspond to a linear program,
because on the grid it is less crucial for values to be at the
top of the stack to be operated upon.

For example, the following depiction has clear meaning:
3 2 1
3 2 1

double dup
6 2 2 1

sub add
4 3

mul
12

However, the “sub” call is using two values that cannot be
on top of the stack, as one of them came from “dup” and is
below dup’s other output. This program is not directly lin-
earisable into a textual program the way that others depicted
in the paper have been (without inserting stack-manipulation
operations), but it is clear that it can be evaluated and ex-
pressed. The semantics of such programs are interesting
future work, but for this paper we concentrate only on the
classical concatenative programs, which correspond to those
where where the rightmost input to each function is also the
rightmost output of a function above.
Similarly, because the number of arguments consumed

by a function is explicit, it is possible to overload functions
by arity, avoiding the need for a series of distinct functions
to be defined with different names to perform the same op-
eration on different numbers of arguments, as in the “rot”,

“rot4”, etc. functions inmost implicit-argument concatenative
languages. However, the utility of this is fairly limited.
Another extension is to lean further into the “pipeline”

nature of these programs, and allow user-defined functions
for data-parallel processing of collections, or of incoming
events. While we have made initial explorations of what this
can permit, it remains unclear just what it should look like
or how it should work, and we do not discuss it further here.

Because programs are edited non-textually and with selec-
tions of contiguous elements, this approach may also have
applications for programming on mobile devices, where the
small screen size and touch-based input make text-based
programming difficult. Preliminary experimentation with
this possibility has been promising [9], but the space require-
ments are an obstacle. Hybrid or multi-device programming
may be interesting avenues to investigate with this notation.
A practical system implementing this notation interac-

tively need not limit “functions” to merely named references,
but could have arbitrary configuration within the function
cells. For example, a single function could include a drop-
down list or text-entry field to genericise its operation, with-
out needing to incorporate the selected parameter within
the program at run time.
Because the grid inherently represents data flow, an al-

ternative representation of the program as a graph is also
possible, more akin to “node-and-wire” visual languages.
Such a visualisation may be helpful for some users and use
cases, and a multiple-representation approach could permit
switching between the two, just as the grid and text repre-
sentations are animated between in the prototype. A general
graph permits a still more broad range of programs, beyond
even the non-linear ones discussed above, so editing in the
graph format will permit only a subset of programs to con-
vert back to the grid format, but any program in this system
could be transformed to a graph.
The final interactive extension is to be still further inter-

active, or in fact reactive, leveraging the data-flow nature
to integrate external signals. Inputs to functions could arise
from signals in the outside world, and outputs be wired
directly to widgets or controllers without any impedance
mismatch between the language behaviour and the reactive
system.

6.2 Limitations
There are a few limitations of this representation.

6.2.1 Nullary Outputs. A notable limitation of this repre-
sentation is that it is not readily able to represent functions
with nullary output, that is, functions which consume one or
more values, but produce none. These functions do exist in
concatenative languages: one use is functions called purely
for side effects in languages which allow that, such as “print”.
Another is a very primitive operation often called “drop”,
which merely discards the item on top of the stack, and is
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used when a function has produced a surplus output. The
model does not accommodate these well. A nullary function
would take up space, but leave a hole in the grid below itself,
as there would be nothing to put in that space.

For example, take the trivial program “2 dup drop 1”, which
uselessly duplicates the value 2 and then discards it:

2 1
2 1
dup

2 2 1
drop

2 1
The values 2 and 1 are adjacent on the stack, and should
be adjacent in the grid as well to be selected as argumetns
to another function (such as “add”), but instead there is the
space below the “drop” function where its output would be.

There are a few potential paths for dealing with this issue.
• One is simply to ignore it: while these operations do
exist in some concatenative languages, the language
of this model just does not include them.

• Another is to extend the stack item(s) on either side to
fill the space, ensuring that the items that are consecu-
tive on the stack remain consecutive in the display.

3 2 1
drop

3 1
This is inconsistent with other grid connections, but
could bemarked with diagonal shading or other means.

• A third is simply not to have such functions: instead
of a “drop” operation that consumes one value and
produces none, include only a function that consumes
two arguments and produces the first as its sole output,
having the same effect of discarding a single value (in
effect, a Church Boolean).

3 2 1
drop
3 1

All of these have reasons to follow them, and we will explore
each in future. Our present prototype follows the third path,
in part due to technical limitations of the rendering, but it
has not thus far been an issue outside of theory.

6.2.2 Space. This layout requires a significant amount of
horizontal space, sufficient to display at least all functions
called on operands in the stack at the same time. With com-
plex function dependency chains, the room required can
even exceed this level.

For generic concatenative programs, this may be an issue.
In particular, visualising execution by substituting function
bodies for their calls (see Section 2.1) will rapidly require a
very large amount of room. For the time being, we are fo-
cused on the interactive use of this representation for editing
a program. Here, running out of room can be accommodated

by abstracting part of the program as a new function, as
encouraged in concatenative programming in general. We
regard this nudge as, if not quite a feature, an acceptable cost
for the enhanced clarity that this view provides.

For some uses, it may be sensible to transpose the grid lay-
out presented here, so that functions are to the right of their
operands, rather than below, and data flows horizontally.
This would not just be a rotation of the required space be-
cause the minimum column width is determined by the size
of the labels, which (presumably) continue to be horizontal
for function names.

6.3 Related Work
Forth is the most widely-known concatenative language,
albeit predating the term. There are many variants of Forth,
often tied to specific machines and what the underlying
hardware most directly supports. The simplistic nature of the
language lends itself to experimentation, which has included
projectional editors [7]. A notable variant in the context
of this work is Moore’s colorForth, which is a semi-visual
language [16]: colour has semantic meaning in the language,
so a word is defined by writing it in red, while writing it
in yellow is a function call, for example. While this is a
visual form of a concatenative language, it does not present
the stack contents at all, and has little in common with our
system or notation.

The term “concatenative” was brought to the fore by von
Thun’s Joy [31], which (unlike Forth) is focused on being a
functional language, and introduced the term “concatena-
tive” for describing this family. Joy includes an extensive set
of combinators foregrounding this functional mindset, and
employs the idea of function parameters and return values,
but is still fundamentally represented as manipulating an
invisible data stack. The toy textual language we created
resembles Joy in spirit, but is not a direct translation of the
original language.
Factor [23] is an object-oriented concatenative language,

consequently supporting complex data types and values. Fac-
tor code is written textually, but edited and executed within
a Smalltalk-style “image”. It follows the same argument-
passing style as our toy language and our notation is thus
compatible with Factor, but rendering values in the interac-
tive tool would be complicated by the presence of objects.
Stack-based concatenative programming is commonly

used in genetic programming, due to its innate spliceabil-
ity [8]. Languages have been designed specifically for this
purpose [13, 22], but primarily for use by computational pro-
cesses, which often produce large and inscrutable programs.
A more visual notation such as ours may make these pro-
grams more comprehensible and assist with “explainable AI”
goals, but we have not yet applied it to them.
While this work has focused on stack-based concatena-

tive programming, there are other concatenative languages
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that do not make similar use of stack arguments. For ex-
ample, the Kihi language [12] is concatenative, composing
programs by appending them, but evaluation splices return
values into the program source in place of function calls and
their arguments, so operands are always within the program
rather than on an implicit stack. Our notation does not op-
erate over these languages, where there is no delineation
between functions and values and alternating rows of each
are impossible.
Other visual programming environments for functional

languages have been proposed, primarily for applicative lan-
guages such as Haskell [5, 24]. Restricting the user to well-
typed programs is important in these systems as in ours.
Applicative and compositional (concatenative) functional
languages are loosely interconvertible, so many applicative
programs could be represented in the notation of this paper.

Hazel [20, 21] is a live, functional, structural programming
environment. The displayed syntax is similar to a typical
applicative textual language, but Hazel programs may have
“holes”, incomplete portions of the program where the type
is known, but the implementation has yet to be written. The
editor evaluates around these holes to display calculation
results during editing, and values that are present may be
rendered in graphical ways. As well as these exploratory
programming elements, the “holes” correspond in part to
the “backtracking” direction of interactive editing described
in Section 4.

The notation in this paper makes clear the data-flow graph
latent in the concatenative program. Other data-flow lan-
guages are therefore relevant. The most widespread data-
flow language is the spreadsheet [15], which also makes use
of a grid structure, but does not operate in a similar fash-
ion. Userland [17] presents a spreadsheet-like UI with an
integrated dataflow environment, including side-by-side rep-
resentation of stages of Unix shell pipelines, which are a form
of compositional programming. This representation was an
inspiration for this work, but the result and semantic use of
layout are very different. Systems such as Natto [29] provide
a cards-on-canvas aesthetic for working with principally
conventional code, equipped with some inter-card data con-
nections and convenient renderers including tables, images,
and JSON values, which inspire some of the presentational
options discussed. The earliest visual data-flow languages
date to the 1960s [30], but there are now a number of nodes-
and-wires data-flow programming systems [11], such as Pure
Data [1], Yahoo! Pipes, and others [4, 27], while a number of
musical tools also follow such an approach [18], including
physical modular synthesisers. These systems could for the
most part represent the same data dependencies as this work,
but without addressing the adjacency of arguments required
in editing a concatenative program.

7 Conclusion
Concatenative languages use an unusual programming para-
digm that is frequently found difficult to read, but concisely
expresses pipeline composition of functions. By showing
arguments and functions together, and their connections
through layout, we can create a concise representation of
the program showing the structure and flow of the program.
This paper has presented such a notation and a prototype
interactive editor using it, and highlights the potential for
alternative representations of this paradigm to simplify the
use of concatenative programming in suitable contexts.
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