
Grace: the Absence of (Inessential) Difficulty

Andrew P. Black
Portland State University

black@cs.pdx.edu

Kim. B. Bruce
Pomona College, CA
kim@cs.pomona.edu

Michael Homer
Victoria University of Wellington

mwh@ecs.vuw.ac.nz

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Grace is the absence of everything that indicates
pain or difficulty, hesitation or incongruity.

William Hazlitt, 1817

Abstract
We are engaged in the design of a small, simple program-
ming language for teaching novices object-oriented pro-
gramming. This turns out to be far from a small, simple task.
We focus on three of the problems that we encountered, and
how we believe we have solved them. The problems are (1)
gracefully combining object initialization, inheritance, and
immutable objects, (2) reconciling apparently irreconcilable
views on type-checking, and (3) providing a family of lan-
guages, each suitable for students at different levels of mas-
tery, while ensuring conceptual integrity of their designs. In
each case our solutions are based on existing research; our
contribution is, by design, consolidation rather than innova-
tion.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: classes and objects; control structures; inheri-
tance

General Terms Languages, Design

Keywords Grace

1. Introduction
Although object-oriented programming is widely taught in
introductory computer science courses, no existing object-
oriented programming language is the obvious choice for a
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teaching language. This makes it harder to transfer skills,
techniques, and teaching materials between courses and be-
tween institutions. During ECOOP 2010, a group of lan-
guage researchers and educators concluded that the time was
ripe for an effort to design a language focussed on teaching.

A “design manifesto” was presented at SPLASH 2010 [6],
in which we attempted to lay out design principles for such
a language; as we did so, it became clear that the princi-
ples were often in conflict and that resolving these conflicts
would be challenging. Since then, three of us (Black, Bruce
and Noble) have been meeting weekly to pursue the design
of the language, which we have named “Grace”, in honor of
Admiral Grace Hopper, and in the hope that the name would
serve as an admonition not to settle for less-than-graceful
solutions. Homer has built a preliminary implementation of
the core of Grace, which we review in Section 6.

From the beginning, our high-level goal has been to in-
tegrate proven newer ideas in programming languages into
a simple, general-purpose teaching language whose features
represent the key concepts of object oriented-programming
directly, simply and gracefully. We feel that this is important
because we want to focus the attention of our students on
the essential, rather than the inessential, complexities of pro-
gramming and modeling. We hope that the design sketched
here meets this goal.

Grace follows in the tradition of languages like Al-
gol W, Pascal and Modula, in that it attempts to integrate
features that support the state-of-the art in programming
into a general-purpose language that is as simple as pos-
sible. This is not to say that we do not also value other ap-
proaches to teaching, for example, approaches that start with
a domain-specific language such as Logo [1], Alice [14] or
Scratch [27]. Notwithstanding the usefulness of these ap-
proaches, computer science students will, for the foreseeable
future, need to be proficient in the object-oriented paradigm
using a general purpose language: Grace is designed to sim-
plify the process of gaining that proficiency. One lesson that
we have learned from domain-specific teaching languages



is the importance of a programming environment tailored to
novices, a lesson that has been embodied in environments
such as BlueJ [24] and DrRacket [18]. Our intention is to
re-target one of these environments to Grace, or, if this is not
possible, to develop something similar.

The preliminary design for Grace has been discussed on
our blog1, and a draft specification is available at the same
site. The purpose of this paper is not primarily to review
the state of Grace, but rather to focus on three problem ar-
eas where we believe we have found Graceful resolutions to
what seemed to be difficult problems: Section 3 discusses
how we construct objects, Section 4 explains how we treat
types, and Section 5 summarizes our approach to providing
different “levels” of Grace for teaching students at differ-
ent stages of mastery. Because a language is an ecosystem
in which everything is connected to everything else, these
sections cannot be independent. We therefore start with an
informal overview of Grace.

2. Grace in a Nutshell
Grace is an imperative object-oriented language with block
structure, single dispatch, and many familiar features. Our
design choices have been guided by the desire to make
Grace look as familiar as possible to instructors who know
other object-oriented languages, and by the need to give
instructors and text-book authors the freedom to choose their
own teaching sequence. Thus, in Grace it is possible to start
using types from the first, or to introduce them later, or not
at all. It is also possible to start with objects, or with classes,
or with functions. Most importantly, instructors can move
from one approach to another while staying within the same
language.

Grace can be regarded as either a class-based or an object-
based language, with single inheritance. A Grace class is
an object with a single factory method that returns a new
object:

class aCat.named(n) {
def name = n
method meow { print "Meow" }

}
var theFirstCat := aCat.named "Timothy"

Here the class is called aCat and the factory method is
called named(). (When we use () in the name of a method,
it indicates the need to supply arguments.) After executing
this code sequence, theFirstCat is bound to an object with
two attributes: a constant field (name), and a method meow.
The expression c.name answers the string object "Timothy"
and c.meow has the effect of printing Meow.

An object can also be constructed using an object lit-
eral — a particular form of Grace expression that creates a
new object when it is executed. In addition to fields and

1 http://www.gracelang.org

methods, an object literal can also contain code, which is
executed when the object literal is evaluated. For example:

var theSecondCat := object {
def name = "Timothy"

method meow { print "Meow" }
print "Timothy now exists!"

}

This code has the effect of printing “Timothy now exists!”,
and binding the variable theSecondCat to a newly-created
object, which happens to be operationally equivalent to
theFirstCat.

As we will see in Section 3, a class is equivalent to an
object with a factory method that contains an object literal.
Thus, an instructor who wishes to start teaching with objects
need not talk about classes at all until later. Classes are
in the language because we felt that they were important
for convenience, and to help make the connection between
Grace and existing languages.

It is important to note that, in Grace, classes are com-
pletely separate from types: the class aCat is not a type and
does not implicitly declare a type. If the programmer wishes
to specify types, she may easily do so, as shown next.

type Cat {
name −> String
meow −> Done

}
class aCat.named(n : String) {

def name = n
method meow { print "Meow" }

}
var theFirstCat:Cat := aCat.named "Timothy"

The type Done is a placeholder for methods that do not
return a result.

Mutable and immutable bindings are distinguished by
keyword: var defines a name with a variable binding, which
can be changed using the := operator, whereas def defines a
constant binding, initialized using =, as shown here.

var currentWord := "hello"

def world = "world"

...
currentWord := "new"

The keywords var and def are used to declare both local
bindings and fields inside objects.

An object’s methods are immutable, in the sense that
once an object is created, the code of its methods cannot
be changed. A field that is declared with def is constant;
the binding between the field name and the object cannot
be changed, although the object, if mutable, may change
its state. Each constant field declaration creates an accessor
method on the object. For example, the object club defined
by
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def club = object {
def members = MutableSet.empty

}

has a method called members that returns the current set of
members. The value of this set may change over time, for
example, after executing club.members.add(anApplicant).

Declaring a field with var creates two accessor methods,
one for fetching the currently bound object and one for
changing it. So, after the declaration

def car = object {
def numberOfSeats = 4
var speed: Number := 0.

}

the object car will have three methods called numberOfSeats,
speed, and speed:=(); the last method might be used by
writing car.speed := 30.

Variable fields have no value until they are initialized; this
is because Grace does not define a universal “nil” object,
and thus there is no default value that could be used to
initialize all variables. We expect that most variable fields
will be initialized when they are declared, as in the example
above. Attempting to access an uninitialized field is an error
that the implementation will detect, and which will cause the
program to terminate.

Grace will support visibility annotations that allow the
programmer to control access to fields and methods from
outside an object by marking them as public or confidential.
For simplicity, we do not discuss this further here, and omit
visibility annotations in all the sample code in this paper.

In Grace we say that a method is invoked using a “method
request”. We introduce this terminology to distinguish the
operation — fundamental to object-orientation — of asking
an object to do something, where the choice of what to do
is made by the object itself, from procedure or function
call, where the choice of operation is made by the caller.
This distinction is also conveyed by Smalltalk’s “message
send” terminology, but now that networks and distributed
systems are ubiquitous, “sending a message” has become an
ambiguous term.

Following many other languages, the request target self
can be omitted. We have already seen several messages re-
quested of an implicit receiver; for example, print "Meow"
is short for self.print "Meow".

All the attributes of an object (methods, variable fields,
and constant fields) exist in the same namespace. There is
thus a potential ambiguity in the interpretation of a name n.
To resolve this, we disallow “shadowing” of variable names
in enclosing scopes; one or other of the variables must be
renamed. Thus, if n is defined in the local scope, it cannot
also be imported from an enclosing scope. It may, however,
be inherited, in which case the local definition overrides the
inherited one.

If there is no local declaration of n, you might wonder
whether n is a reference to a variable (or constant) declared
in an enclosing (static) scope, or a request self.n of an
inherited method. To remove this ambiguity, we disallow
this situation too. That is, we do not allow n to be declared
in a statically enclosing scope if it is also inherited. In such
a case, the programmer must rename the variable n in the
enclosing scope. Bracha has compared various options in
this space [8]. Our choices might be too restrictive for an
industrial-strength programming language, but for teaching
purposes we believe them to be appropriate.

Making field access syntactically identical to a self
method request is deliberate, following the lead of Eiffel [30]
and Self [37]. This allows the programmer to override a
field’s implicitly-defined accessor method with a custom
method, and thus allows the programmer to make changes
to the implementation of an object, such as adding bounds
checking, without affecting its interface.

An object containing no mutable state is by default equal
to any other object with the same structure and values for its
fields. This follows Baker’s Egal predicate [3]. The equality
method that implements this test is generated automatically.

Grace method names may consist of multiple parts (“mix-
fix” notation), like Smalltalk messages (but without the
colons) [19]. Separate lists of arguments are interleaved be-
tween the parts of the name, allowing them to be clearly la-
belled with their purpose. Thus we might define on Number
objects

method between (l:Number) and (u:Number) {
return (l < self) && (self < u)

}

The syntax of a method request is similar to that used
in Java, C++, and many other object-oriented languages:
obj.meth(arg1, arg2), but extended to allow meth to have
multiple parts. We could request the above method between
()and() on 7 by writing

7.between(5)and(9)

Single arguments that are literals do not require parentheses,
so alternatively we could write

7.between 5 and 9

Grace also allows operator symbols (and sequences of
operator symbols) to be used to name methods. A method
name composed of operator symbols is used as a binary in-
fix operator, unless it is defined using the prefix keyword, in
which case it is a unary prefix operator. There is no ambi-
guity because the receiver must be explicit when requesting
operator methods. Thus, a − b is a request of the binary mi-
nus method on object a, while − b is a request of the prefix
negation method on object b.

Grace includes first-class blocks (lambda expressions). A
block is written between braces and contains some piece of
code for deferred execution. A block may have arguments,



which are separated from the code by −>, so the successor
function is {x −> 1+x}. A block can refer to names bound
in its surrounding lexical scope, and returns the value of the
last-evaluated expression in its body.

Control structures in Grace are methods. The built-in
structures are defined in the basic library, but an instructor
or library designer may replace or add to them. Control
structures are designed to look familiar to users of other
languages:

if (x > 5) then {
print "Greater than five"

} else {
print "Too small"

}

for (node.children) do { child −>
process(child)

}

Notice that the use of braces and parentheses is not arbitrary:
parenthesized expressions will always be evaluated exactly
once, whereas expressions in braces are blocks, and may
thus be evaluated zero, one, or many times. A return state-
ment inside a block terminates the method that lexically en-
closes the block, so it is possible to program quick exits from
a method by returning from the then block of an if()then()
or the do block of a while()do().

String literals, written between double quotes, support
interpolation, using a syntax similar to that of Ruby. Code
inside braces within a literal is evaluated when the string is;
the asString method is requested on the resulting object, and
the answer is inserted into the string literal at that point.

print "1 + 2 = {1 + 2}" // Prints "1 + 2 = 3"

While Grace uses braces to delimit blocks and other lit-
erals, it also enforces correct indentation. Braces and inden-
tation may not be inconsistent with one another: the body of
a method, for example, must be indented. Enforcing this in
the language ensures that students will learn good practice,
and avoids the common problem of not being able to find a
mismatched brace because of the tendency of one’s eye to
believe the indentation rather than the braces.

Grace code can also be written in “script” form, without
object or class definitions. We imagine such code as being
enclosed in a top-level object literal. Thus, methods can be
defined at the top level, and any code written at the top level
will be executed immediately. This supports imperative-first
teaching styles.

We recognize the growing importance of parallelism, and
recognize that Grace needs to support the teaching of paral-
lel and concurrent programming. Unfortunately, there is as
yet no consensus on the best way to teach these concepts.
We intend to use libraries to provide a variety of language
mechanisms for parallelism and concurrency. These efforts

are very much a work-in-progress, and are not discussed fur-
ther here.

3. Constructing Objects
Having completed our overview of Grace, let us turn to
the first problem area: object construction and initialization.
This is often quite tricky, especially for objects that are
defined using inheritance. Many languages that are currently
used for teaching novices impose a lot of overhead on the
process of creating even the simplest objects.

3.1 The Problem
Let’s look at the task of making a simple AddressCard object
in Smalltalk and in Java. In Smalltalk, we need to define a
both a class:

AddressCard (subclass of Object)
instance variable names: name address
methods:

name
↑ name

address
↑ address

email
EmailApp openComposerWindowTo: name

private methods:
setName: nm address: adr

name := nm.
address := add.
↑ self

and a metaclass AddressCard class:

AddressCard class
methods:

for: aName address: anAddress
↑ self basicNew

setName: aName address: anAddress

Then we can use an AddressCard object like this

| ww |
ww := AddressCard for: 'Wackiki Wabbit'

address: 'ww@WarnerBros.com'.
ww email

The weakness of the Smalltalk design, from the point
of view of teaching novices, is that there is quite a lot to
explain here, and we have to explain all of it before our
students can define and create the very simplest object.
AddressCard defines the instance variables and methods of
every AddressCard object. In contrast, AddressCard class
defines the behavior of the factory object that is used to
make new AddressCard objects; it has a method for:address:
that exists for this purpose. Although AddressCard objects
are intended to be immutable, there has to be a method (here
called setName:address:) whose only purpose is to allow
the for:address: method in AddressCard class to initialize
the instance variables of the newly created object.



Although we don’t have to explain the whole idea of
the class–metaclass hierarchy before students construct their
first objects, it is still hanging there as a teaser to the smart
students: if every object has a class, and every class is an
object, then what’s the class of the class’s class? And what
of that class?

The strength of the Smalltalk design is that once these
things have been understood, the students can apply what
they have learned, and discover that the same principles
are at work everywhere in the Smalltalk system. For ex-
ample, basicNew isn’t magic: students can look at its im-
plementation and see how it is implemented. Neither are
classes magic: they are just objects that ultimately in-
herit from Behavior. The instance-variable-setting method
setName:address: may be inconvenient, but it has to exist
because an object’s instance variables are accessible only by
that object; there is no “special exception” for the object’s
class, which is, after all, just another object.

Java, following C++ and other languages, attempts to
simplify the situation by combining the class and the meta-
class into a single syntactic construct, the Java Class, and by
abandoning object encapsulation in favor of class encapsu-
lation. The corresponding Java class looks like this:

class AddressCard {
private String nameField;
private String addressField;
// constructor method //
public AddressCard(String nm, String adr) {

nameField = nm;
addressField = adr; }

public String address() {
return addressField; }

public String name() {
return nameField; }

public void email() {
EmailApp.openComposerWindowTo(nameField);

}
}

The strength of the Java design is that, because Java
classes are not objects, they don’t themselves have classes,
so there is no class–metaclass hierarchy and no danger of
students having their heads explode trying to figure it out.
The Java design has its own weaknesses, however. Jetti-
soning the idea that classes are objects means that inheri-
tance doesn’t work on static methods. Because of this, in-
stead of each class inheriting a static method basicNew,
Java needed — and instructors must explain — two language
primitives: the operation new, which creates an object, and
“constructor methods”, the parameters of which come from
new, but which side-effect the newly constructed object. All
of this is, from the perspective of the student, “magic”. It
cannot be deduced from a few underlying principles: it is
“just the way that the language works”, and must be memo-
rized. Moreover, one of the overarching principles of object-
orientation — that information hiding applies to objects, not

classes — has been lost as an object can access the private
instance variables of other objects of the same class.

The process of object creation becomes even more com-
plicated when we add inheritance to the picture, although it
may be possible to postpone that for a few weeks, depending
on the teaching sequence. Once inheritance is introduced, we
have to explain how the inherited instance variables are ini-
tialized, and how the initial values are passed from the con-
structor of the inheriting class to its parent. Then we have to
teach programming patterns that make this implicit reuse of
the parent’s initialization code robust to change.

3.2 Object Construction in Grace
Grace seeks to play on the strengths of both Smalltalk and
Java by giving the student a small number of underlying
principles that can be applied uniformly, and by simplifying
the syntax so that everything about an object can be specified
in a single construct. As a result, we believe that it presents
a much simpler picture of objects to the student.

Grace objects are self-contained: conceptually, each ob-
ject owns its own fields and methods. As in Emerald,
O’Caml, and JavaScript, objects are created by executing
a language expression, which in Grace is called an object
literal. There is no need to introduce classes. Here is how the
above address card object might be created in Grace:

object {
def name = "Wackiki Wabbit"
def address = "ww@WarnerBros.com"
method email
{ EmailApp.openComposerWindowTo(name) }

}

Execution of an object literal results in a new object with
the attributes between the braces. Object literals are naturally
first-class: they can be passed as arguments, returned as
results, and bound to variables, so we might give a name
to our object using a var or def declaration:

def ww = object {
def name = "Wackiki Wabbit"
def address = "ww@WarnerBros.com"
method email
{ EmailApp.openComposerWindowTo(name) }

}

Grace’s information hiding rules tell us that, from the
outside, the object ww above and the object ww' that follows

def ww' = object {
method name
{ "Wackiki Wabbit" }

method address
{ "ww@WarnerBros.com" }

method email
{ EmailApp.openComposerWindowTo(name) }

}

are indistinguishable: both appear to their clients to have
methods called name, address, and email. The fact that some



of these methods are implemented by field access and others
by executing code is no object’s business but ww and ww'
themselves.

Of course, it is quite common to want to create many
address cards, which will need to be initialized to different
values. To achieve this, we need to parameterize over the
values of the fields. In Grace, we do this in the same way
that we parameterize over anything else: we write a method
with parameters.

method for (nm) address (adr) {
object {

def name = nm
def address = adr
method email {

EmailApp.openComposerWindowTo(name) }
}

}

Such a method is conventionally called a factory method,
because it manufactures an object, but in Grace there is
nothing special about a factory method: it is just a method
that returns the result of executing an object literal, and is
not fundamentally different from any other code that makes
an object.

It’s usually convenient to put such a method in a named
object, so that it can be re-used easily:

def anAddressCard = object {
method for (nm) address (adr) {

object {
def name = nm
def address = adr
method email {

EmailApp
.openComposerWindowTo(name) }

}
}

}

Now the student can write:

def ww = anAddressCard.for "Wackiki Wabbit"
address "ww@WarnerBros.com"

def fjl = anAddressCard.for "Foghorn Leghorn"
address "fjl@WarnerBros.com"

We expect that this pattern — an object containing a sin-
gle factory method — will be common. Although it’s quite
simple, it does depend on nesting (an object literal in a
method in an object literal), and that can be hard for novice
students to understand at first. For instructors who want to
delay a discussion of nesting, or who just prefer a more con-
cise or more familiar syntax, the following class declaration
accomplishes the same thing:

class anAddressCard.for (nm) address (adr) {
def name = nm
def address = adr
method email
{ EmailApp.openComposerWindowTo(name) }

}

Thus, a Grace class is really just a factory object. In other
languages, classes play a multitude of rôles; Borning lists no
less than eight for Smalltalk [7]. Grace classes are not meta-
objects that describe their instances, nor are they types. We
agree that meta-objects and types are important, indeed, we
think that they are sufficiently important to have their own
representations in Grace, leaving classes to be generators of
new objects.

3.3 Adding Inheritance
Students of language design will see that there is nothing
new here: Grace’s object literals are clearly based on Emer-
ald’s object constructors [5]. However, Emerald did not sup-
port inheritance, and Grace must. How can we add inheri-
tance to the picture?

In Grace, one inherits from an object, as shown in the
following example.

def wwPhoneCard =
object {

inherits anAddressCard.for "Wackiki Wabbit"
address "ww@WarnerBros.com"

def phoneNumber = "866−373−4389"
method call {

PhoneDialer.dial(phoneNumber) }
}

The object wwPhoneCard inherits all of the (public and
confidential) methods and fields of anAddressCard.for "
Wackiki Wabbit" address "ww@WarnerBros.com". To
these it adds a new field phoneNumber and a new method
call. It’s also possible for the derived object to override inher-
ited methods, and to make super-calls to overridden meth-
ods. Inheritance can also be used with the class syntax; the
meaning is that the object constructed by the factory method
inherits from the object that follows the inherits keyword.

class aPhoneCard.for(nm)address(adr)phone(nbr) {
inherits anAddressCard.for (nm) address (adr)
def phoneNumber = nbr
method call {

PhoneDialer.dial(phoneNumber)
}

}

Grace’s inheritance draws from the original use of prefix
classes in Simula 67, which defined the meaning of class
prefixing in term of concatenation of code [32], and the
work of Taivalsaari on inheritance for prototype-based lan-
guages [35], which is based on concatenation of objects.
Grace restricts the expression that appears after inherits to
be “definitively static”. The normal use case is that this ex-
pression is a method request on a factory object. This re-
striction means that it is always possible to ascertain stati-
cally which attributes (fields and methods) are being inher-
ited, and allows the compiler or the IDE to warn the pro-



grammer if methods are being overridden without override
annotations, or vice versa.

Notice that the attributes of an object never change over
that object’s lifetime. Here Grace stands in contrast to lan-
guages like JavaScript, Python, and Ruby, where fields can
be added to objects at any time. While this makes Grace less
dynamic than these languages, we also think it makes Grace
programs easier to design and to understand than programs
in more dynamic languages. Crucially, this design decision
also means that Grace programs can be type-checked with a
straightforward type system.

4. Type Checking
To separate the concepts of class and type, and to allow
different styles of teaching that introduce these concepts in
different orders, a Grace class is not a type, nor does a Grace
class or object implicitly define a type. When programmers
need types they must define them explicitly.

Most Grace types are structural — sets of method names
and signatures. The keyword method is omitted in type
literals, since only methods can be in a type. Thus, the object
ww from Section 3.2

def ww = object {
def name = "Wackiki Wabbit"
def address = "ww@WarnerBros.com"
method email
{ EmailApp.openComposerWindowTo(name) }

}

has the (anonymous) type

{
name −> String
address −> String
email −> Done

}

Recall that, from the outside, fields are indistinguishable
from methods.

A type declaration can be used to name this type:

type AddressCard = {
name −> String
address −> String
email −> Done

}

The key relation between types is conformance. We write
B <: A to mean B conforms to A; we say that the “subtype”
B conforms to the “supertype” A. Grace’s conformance rela-
tionship is standard: a subtype must contain all the methods
of a supertype, result types are covariant, and argument types
contravariant.

Because Grace types are structural, any object that has
methods with conforming method signatures conforms to
the type: no inheritance relationships or implements declara-
tions are necessary. The various address card and phone card
objects from Section 3 all conform to the AddressCard type

declared above, but they will also conform to the smaller
type { name −> String }, which requires only that a con-
forming object have a name method that returns a String.

Grace method declarations can include the types for their
arguments and results. In the example below, the method
doubleUpName takes as argument any object that has a
name method returning a String.

method doubleUpName(
namedObject : { name −> String } ) −> String
{ namedObject.name ++ namedObject.name }

Classes can be tied into the type system simply by giving
their factory method a return type:

class anAddressCard.for (nm) address (adr)
−> AddressCard { ... }

class aPhoneCard.for(nm)address(adr)phone(nbr)
−> PhoneCard { ... }

This shows the power of a simple mechanism used consis-
tently.

As examples in earlier sections have shown, local vari-
ables, methods and fields are not required to declare their
types. Grace is gradually typed: omitted types of local vari-
ables and constants, and defined fields, may be inferred, but
omitted argument and result types are treated as the prede-
fined type Dynamic. All requests on expressions with type
Dynamic are dynamically checked, as in C# [4]. In this way,
Grace supports both statically and dynamically-typed code;
indeed, programmers can choose at the level of an individual
declaration.

Within dynamically-typed code, types need not be men-
tioned at all, and so all discussion of the concept of type
can be delayed until late in the teaching sequence. When in-
structors do introduce types, they may do so in the language
that students are already using, as opposed to, for example,
starting teaching in Python and then transitioning to Java. A
simple static type checker will support instructors who wish
to require that all student programs are fully typed.

Grace defines a type Any that contains no methods and
to all other types conform, and a type None that contains all
methods and to which no other types conform; no Grace ob-
ject has type None. The type Done is similar to the type Unit
in ML or Haskell; it is inhabited by a single value (called
done), and is used to indicate that a method has completed
execution with nothing interesting to return. These types
help ensure that every expression has a principal type, and
every type can be denoted in the language. We hope this will
give us a chance of explaining every type in students’ pro-
grams in terms that they can understand.

As well as type literals, Grace provides a small selection
of type operators. T1 & T2 is the type of all objects that
contain the methods in T1 as well as the methods in T2.
In contrast, T1 + T2 is the type of objects that have all the
methods common to both T1 and T2.



These type operators allow more complex types to be
built up from simpler types. As a consequence, Grace’s type
system includes no special support for extension (sometimes
called inheritance) of types, because & types are all we need.
For example, the type of a phone card object can be defined
by “anding” the type of an address card and the type of the
methods added by the subclass:

type PhoneCard = AddressCard & {
phoneNumber −> Number
call −> Done

}

Grace’s type system has two non-structural features to
support multi-way branches and pattern matching: variant
types and singleton types. Variant types [22], which are writ-
ten T1 | T2, are similar to structural sum types T1 + T2 in
terms of the requests they permit on objects of the type. In
both cases, only those requests common to both T1 and T2
may be made. The difference is that, whereas any object sup-
porting just these common requests would conform to T1+
T2, only subtypes of T1 and subtypes of T2 conform to the
variant type T1 | T2.

For example, an object that responds to nothing but an
email method conforms to the structural sum type

AddressCard + {email −> Done; url −> String}

because that sum type is equivalent to the structural type

{email −> Done}

Such an object would not conform to the variant type

AddressCard | {email −> Done; url −> String}

because neither

{email −> Done} <: AddressCard

nor

{email −> Done} <: {email −> Done; url −> String}

even though the only request that can be made via a reference
of the variant type is precisely {email −> Done}.

Variant types let the typechecker guarantee that multi-
way branches are exhaustive. Inspired by Scala, a Grace
match statement (itself defined as a library method) takes an
object and selects one of a series of single-argument blocks:

method handle(x :
AddressCard | {email −> Done; url −> String}) {

match (x)
case { a : AddressCard −>

print "Name: {a.name}" }
case { u : {email −> Done; url −> String} −>

print "URL: {u.url}" }
}

By checking that each leg of the variant type is handled by
one of the cases, the typechecker can ensure that this match
is exhaustive, so that no “otherwise” clause needs to be
supplied, and a missing case exception cannot be generated.

Similar to Scala, singleton types denote individual objects
(although, unlike Scala, Grace’s singleton types do not admit
null). A Grace programmer can define a singleton object
“missing value”

def missing = object {
method asString { "Missing Value" }

}

and then use this to create a singleton type to represent
potentially missing data:

class databaseRecord.new(id', name') {
var id : Number | singleton(missing) := id'
var name : String | singleton(missing) := name'

}

Some simple objects, notably strings and numbers, can
act as their own singleton type, supporting very concise
multi-way branches

method howMany( n : Number ) −> String {
match (n)

case { 1 −> "One" }
case { 2 −> "Two" }
case { −> "Lots of" }

}

and to implement simple enumerations:

type Colour = "red" | "blue" | "green" |
"cyan" | "magenta" | "yellow" | "puce"

Because Grace types are gradual, dynamically-typed and
statically-typed code can co-exist in the same program.
When objects move across the boundary from dynamically-
typed to statically-typed code, run-time checks may need
to be inserted to make sure that dynamically-typed objects
respect the type invariants assumed by the statically-typed
code. This mechanism means that types can be introduced
into an existing program gradually; it is not necessary to add
types everywhere before the program can be executed.

There are several options for interpreting types in a grad-
ual system. In a safe statically-typed system, the compiler
guarantees in advance that no type errors [11] will occur at
run-time. In particular, the system will ensure that a method
can be requested successfully only from an object that has
an appropriately named method that accepts the given argu-
ments. In a safe dynamically-typed system, the run-time sys-
tem guarantees that no requests for nonexistent methods will
occur at run-time, in this case by inserting dynamic checks.

What is the meaning of a type annotation in a dynamically-
typed system? As suggested above, one can set up the sys-
tem so that dynamic checks are inserted when objects move
from static to dynamic code. What should happen when
such a test fails? Certainly, the system should report that
failure. It could also terminate the execution of the program
at that point. However, it might be the type annotation that is
wrong: in that case it might make more sense to continue ex-
ecution after the error report to see if a failure (e.g.,“method



request not understood”) eventually results from the type er-
ror. We intend to design a run-time system that will allow
programmers to choose from these options.

5. Language Levels
Grace will include “language levels” similar to those found
in DrRacket [36] (formerly DrScheme). DrRacket includes
five different language levels designed for teaching. Moving
up from the basic level, successive languages introduce list
constructs, local bindings and higher-order functions, anony-
mous functions, and mutable state.

Findler and colleagues have argued persuasively for the
value of language levels [18]. Starting teaching in a re-
stricted language allows the compiler or IDE to help the
student by catching mistakes that might otherwise be inter-
preted as esoteric advanced features. It also allows error re-
ports and suggestions for corrections to be more specific and
helpful. DrRacket supports its language levels using a mod-
ule system and by using macros to translate higher-level fea-
tures into core-Racket. We intend to use library modules to
support language levels in Grace.

Each Grace module will specify the level in which it is
written with a dialect clause, the target of which is a library
that defines a language level.

dialect BasicGrace
def o = object {

method m(...) {... basicMethod ...}
}

The keyword dialect invokes a variant of inheritance
that imports only the public attributes of the named “dialect
object”. In the above example, basicMethod represents a
method imported from the dialect object BasicGrace. Be-
cause basicMethod is a public method of BasicGrace, it
may be accessed via a method request to self, just as if it
were defined at the top-level of this example. Because self
as the target of a method request can be left implicit, we

can write basicMethod rather than self.basicMethod. This
is especially useful for methods that implement new control
structures.

Dialect inheritance is essentially the class prefix mecha-
nism that Dahl and Nygaard used to incorporate the simu-
lation language Simula I into the general-purpose language
Simula 67, about which Dahl wrote:

One way of using a class, which appeared important
to us, was to collect concepts in the form of classes,
procedures, etc., under a single hat. The resulting con-
struct could be understood as a kind of “application
language” defined on top of the basic one. It would
typically be used as a prefix to an in-line block mak-
ing up the application program. [16]

Because Grace incorporates both closures and multi-part
method names, what in other languages would be built-in
control structures, such as while . . . do . . . , are defined as

methods. The dialect construct lets Grace provide different
control structures in different language levels. For example,
a dialect could override the built-in version of the for()do()
method with a new version that contains debugging enhance-
ments, or supplement it with an extended version that takes
additional argument blocks specifying the invariant and vari-
ant of the loop.

What an inheritance-based dialect construct does not
do is restrict the use of basic language features, like var
declarations. If we find such restrictions necessary, we plan
to implement them using annotations that are understood by
the compiler.

While we have not yet specified the language levels for
Grace, we imagine a lattice of languages rather than a se-
quence, so “sublanguages” is a more accurate term than lan-
guage levels. For example, one instructor might start teach-
ing with simple immutable objects operating on numbers,
while another might start with a library of graphical objects
that are updated in response to user interaction.

One possible lattice of sub-languages is shown in Fig-
ure 1. There might even be higher languages not shown in
the figure, such as a language that loosens Grace’s restric-
tions on shadowing variable names, a restriction that is ap-
propriate for introductory teaching, but which might prove
inconvenient for large programs. We expect that several such
hierarchies might be necessary to meet the needs of different
instructors.

6. Implementation
Homer has written a prototype self-hosted compiler for
Grace, known as Minigrace. Minigrace is able to generate
both C, which can then be compiled to native code, and
JavaScript, which can be run in a web browser. Minigrace
currently accepts almost all of the specified parts of Grace,
and includes a static structural type-checker. The same com-
piler frontend supports all the backends; the C backend is de-
signed to work on any POSIX-compatible system equipped
with gcc, including Linux, NetBSD, and Mac OS X.

Minigrace comprises about 9,000 lines of Grace, dis-
tributed as shown in Table 1, along with a small runtime
library in each of the target languages. The compiler com-
piles itself, and exercises most of the features of Grace.

To bootstrap the compiler, Homer built a simple prototype
for a small subset of Grace. This prototype used the Parrot
Compiler Toolkit and ran on the Parrot virtual machine;
the current compiler was compiled by that prototype until
it was able to compile itself. The implementation process
revealed some problems with the language design, which
were resolved by changing the language specification.

The C backend was preceded by an LLVM backend, but
debugging was overly difficult and the runtime library, in C,
expanded until it became clear that a higher-level language
such as C would be a better target. Both backends used the
same runtime library, and implementation of the C backend



BasicGrace
def declarations
var declarations
if…then…else
while…do
object literals
inheritance from system objects

FunctionalGrace
def declarations
object literals

PrimitiveGrace
numbers
booleans
method definitions
method requests

BasicCollections
mutable collection objects
control structures over collections

ImmutableCollections
immutable collection objects
control structures over collections

CollectionGrace
type parameters

InheritanceGrace
full inheritance

PatternGrace
match statement 

Figure 1. A possible lattice of sublanguages; the arrows in-
dicate containment. Each sublanguage includes the features
listed in its box and the union of all of the features of the
sublanguages that it contains.

Component Lines
Compiler driver 100
Utility and interface functions 300
Lexer 700
Parser 1800
AST 1500
Typechecker 1400
C backend 1800
JavaScript backend 1000
Prelude and collections 400

Table 1. Distribution of Minigrace source lines

progressed much faster than the original LLVM backend;
the LLVM backend was eventually removed. C is also more
portable, allowing source tarballs to be pre-generated and
distributed. The JavaScript backend was originally a toy de-
veloped while other work had lapsed, but became fully func-

tional. The C backend is the primary development target,
supporting all of the features of Grace, while the JavaScript
backend is updated subsequently to include new functional-
ity, subject to the limitations of JavaScript.

Efficiency is not a goal of Minigrace, beyond practical-
ity of execution. Small- to mid-sized programs compile and
run quickly. The native compiler incorporates garbage col-
lection and (optionally) optimizes tail-calls. Error reporting
is currently inadequate, and at times invalid code may misbe-
have rather than reporting an error. Nevertheless, Minigrace
is able to correctly compile itself, its test suite, and various
sample programs in a reasonable time.

Implementation of the language gave rise to some chal-
lenges. One difficulty was Grace’s semantics for non-local
returns — that a return statement inside a block returns from
the method in which the block is defined. Because of this,
some, but not all, executions of return in a block must jump
up the call stack. In C we are able to use setjmp and store
the return point in the block object, with special handling
for method dispatch on blocks. In JavaScript we did not
have this option, and instead used the only form of non-local
control-flow available: throwing an exception. This greatly
complicates the generated code. Every dynamic execution of
a method body must have a unique identifier to distinguish
its own returns from others’. We implement this identifier
as a counter; the method must be prepared to catch a return
exception and either perform a local return or rethrow the
exception.

The implementation process also gave us some insights
into the language design. For example, at first we used the
type None to indicate a command with no return value.
Because None is uninhabited, this made the result of such
commands unassignable, thus enabling the implementation
to alert students to a common error. However, this typing
made it impossible to write code that was polymorphic over
whether or not an object was returned. For example, it was
impossible to apply a generic block and store the result.
In response, we changed the language specification so that
commands return the inhabited “unit” type Done. On an-
other occasion we found that the method request syntax was
ambiguous, and so we changed it so that it has a single clear
interpretation.

The Javascript version of the Minigrace to JavaScript
compiler can be run in a web page, as shown in Figure 2;
all of the compilation takes place in the client-side web
browser [21]. This is a reasonable way of trying out small
programs, but not suitable for production use: it provides no
way of saving your code, and performance, correctness, and
error reporting are limited compared to the stand-alone com-
piler. The web interface also provides access to the test suite,
which demonstrates the implemented features, and to vari-
ous modes showing the parsing and subtyping determined
for the code.



Figure 2. The Minigrace JavaScript frontend running in a web browser

Tarballs of the compiler source can be downloaded from
http://ecs.vuw.ac.nz/∼mwh/minigrace/dist/ and built us-
ing ./configure ; make. A Grace program may be executed
like a script with minigrace program.grace. Other modes,
options, and limitations are described in the documentation.

7. Discussion and Related Work
Arguably harking back at least to Algol-60, educational pro-
gramming languages form a long and illustrious lineage.
Certainly Pascal has left its marks on Grace: we have con-
sciously reverted to Pascal’s rational and explicable type
syntax, rather than C’s “Clockwise Spiral Rule” [2]; Grace’s
variable and constant field declarations are basically the
same as those of Modula-2 — except that we replaced const
with def, because we wanted constant declarations to be no
longer than variable declarations. Scala has also influenced
Grace’s syntax [33]; for example, our class and object dec-

larations and match-case statements are inspired by Scala,
although we have made changes to all of them.

In terms of object-oriented teaching languages — or at
least languages explicitly designed for teaching — Eiffel [28,
29] is the most well known, and a customized first-year
course tailored to Eiffel has been designed recently [30].
Compared with Eiffel, and other efforts such as Object-
Oriented Turing [20] and Blue [23, 25], we have intention-
ally designed Grace to look like a “curly bracket language”
(as Ward Cunningham once put it). This is not simply a mat-
ter of choice. Rather, we recognize that students will need to
transition to other languages — particularly Java and C++,
but also Python, and Ruby, and perhaps Scala, Ceylon, and
Dart. Grace’s operator syntax, including the availability of
prefix operators, has been designed so that most Java and C
expressions can be encoded in Grace. Unfortunately, there is
no free lunch, and much of the complexity of Grace’s syntax
comes from this stylistic compatibility.

http://ecs.vuw.ac.nz/~mwh/minigrace/dist/


In terms of recent educational languages, Racket has also
strongly influenced Grace [17]. The idea of a language tai-
lored to education that is supported by a programming envi-
ronment, where both the language and the environment sup-
port a series of language levels, comes directly from Racket.
Racket is also gradually typed. Nevertheless, although our
aims are similar, many of Grace’s design decisions are very
different from Racket’s.

As we have described above, Grace’s syntax is intention-
ally similar to that of Java and C, while Racket is based
on Scheme and adopts S-expression syntax. Racket’s lan-
guage levels are implemented using its own powerful macro
facilities [36], whereas Grace relies on careful syntax de-
sign to admit as much C-like syntax as possible, on a lan-
guage substrate closer to Self [37] or Newspeak [9]. On the
one hand, this means that some features of Grace — notably
the class syntax — cannot be implemented as extensions in
Grace itself, but must be special-cased in the compiler. On
the other hand, Grace’s multi-part method names and oper-
ator syntax supports significant flexibility and extensibility,
ranging from the definition of basic control-flow constructs
to the definition of parsers combinators, all in the base lan-
guage. Thus, we have not felt a compelling need to introduce
macros as a language construct. In this context, we note that
Scala is also introducing support for macros [10].

Grace shares features of both class-based languages and
prototype-based languages [31]. On the one hand, like class-
based languages, Grace has an explicit class construct; more-
over, Grace’s object literals behave much more like classes
than prototypes. In Self or Scala, each “evaluation” of an
object literal returns the same object, whereas in Grace, as
in O’Caml, and Emerald, each evaluation returns a distinct
object (assuming the objects are designed and initialized so
they they are distinguishable) [26, 37]. On the other hand,
Grace objects can be created without writing any class dec-
larations, and each Grace object conceptually stands alone
without depending on a class. This is much closer to the
prototype-based style.

Finally, as far as we can tell, Grace seems to be the first
purely object-oriented, structurally-typed language that has
been designed since the late 1980s (since Trellis/OWL in
fact [34]). O’CAML and Modula-3 (along with Java and
its vast legacy) are what used to be called“hybrid” object-
oriented languages, and while Eiffel is pure, it is nominally
(and covariantly) typed with a subtle multiple-inheritance
scheme [12, 26, 29]. In some respects, Grace feels to us like
the “road not taken”: connected at least as much to Pascal,
Emerald, Self, or Eiffel, as it is to Java, C#, or Scala. In
many ways, much of Grace could well have been designed
back in 1990 — or perhaps in 1995 for gradual typing. That
it has taken until now says more about the many factors that
influence programming language choice than says about any
technical features of the language design.

8. Conclusion
The main aspects of Grace’s design have been pounded
out between three academic researchers with very differ-
ent views on both language design and teaching program-
ming, so few decisions were uncontroversial. We have been
inspired by Barry Commoner’s Five Laws of Ecology, the
first four of which appeared in his book “The Closing Cir-
cle” [13]:

Everything is connected to everything else.
Everything must go somewhere.
Nature knows best.
There is no such thing as a free lunch.
If you don’t put something in the ecology, it’s not
there.

The fifth law, which Commoner added later, seems most
obviously appropriate to language design: “If you don’t put
something in the language, it’s not there”. As with pollu-
tants, once a feature is in the language, it’s close to impos-
sible to get rid of it, so we have tried to reduce the features
of Grace to the bare minimum, knowing that it will be much
easier to add a feature later than it will be to remove one.

One example of this is pattern matching, a powerful facil-
ity from ML and Haskell that has been popularized by hybrid
languages like Scala. Some would argue that pattern match-
ing is fundamentally at odds with object-oriented program-
ming, since it interrogates the structure of an object rather
than requesting that the object perform some method.

However, “Everything is connected to everything else”.
Once we admit types to the language, and decide that types
do not automatically include a null value, we are led to in-
clude variant types, as described in Section 4. Pattern match-
ing is certainly not the only way of handling variants, but it
is a way that at least some instructors will wish to teach,
especially as it is included in the strawman ACM curricu-
lum [15]. Even those who feel that a pure-object-oriented
approach is superior might want to compare and contrast the
two approaches. Moreover, most of pattern matching can be
defined in library objects, so, strictly, it doesn’t rank as a
language feature at all. However, to get the full benefit of
pattern matching, patterns need to bind variables, and that
cannot be done in a library. It is still not clear to us how to
resolve these conflicting forces.

It has also become apparent that “There is no such thing
as a free lunch.” Every feature that we include in Grace adds
a cost, in terms of complexity of the language description
and the teaching sequence. There is also an implementation
cost, although we have not let that become a major concern.
The design of Grace’s sublanguages is incomplete. While
it is certainly true that “everything must go somewhere”,
instructors will have different views on where that should
be, since they will wish to introduce features in different
sequences, or perhaps not at all.



We are still searching for an analog for Commoner’s “Na-
ture Knows Best”. We are certainly not under the illusion
that the self-appointed Grace design committee knows best.
For this reason we invite comments, criticism and partici-
pation. Go to http://www.gracelang.org to find out how to
get involved. Perhaps the analogous law of language design
will turn out to be “Experience is the best teacher”. What-
ever we choose as good ingredients for a teaching language,
only experience using Grace to teach programming will tell
us whether we have chosen wisely.
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