
Object Inheritance Without Classes
Timothy Jones1, Michael Homer2, James Noble3, and Kim Bruce4

1 Victoria University of Wellington, Wellington, New Zealand
tim@ecs.vuw.ac.nz

2 Victoria University of Wellington, Wellington, New Zealand
mwh@ecs.vuw.ac.nz

3 Victoria University of Wellington, Wellington, New Zealand
kjx@ecs.vuw.ac.nz

4 Pomona College, Claremont, California, USA
kim@cs.pomona.edu

Abstract
Which comes first: the object or the class? Language designers enjoy the conceptual simpli-
city of object-based languages (such as Emerald or Self) while many programmers prefer the
pragmatic utility of classical inheritance (as in Simula and Java). Programmers in object-based
languages have a tendency to build libraries to support traditional inheritance, and language
implementations are often contorted to the same end. In this paper, we revisit the relationship
between classes and objects. We model various kinds of inheritance in the context of an object-
oriented language whose objects are not defined by classes, and explain why class inheritance
and initialisation cannot be easily modelled purely by delegation.

1998 ACM Subject Classification D.3.3 Classes and objects

Keywords and phrases Inheritance, Objects, Classes, Operational semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2016.13

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.2.1.6

1 Introduction

Class-based object-oriented languages have a simple story about the relationships between
objects and the classes that create them: an object is an instance of a class [2]. A specialised,
‘one-off’ object is just an instance of a specialised, one-off, anonymous class [27]. Inheritance
is between classes, and new objects are constructed and initialised by their classes.

This simple story comes at the expense of a more complicated story about classes —
especially so if classes are themselves objects. Thirty years ago, Alan Borning identified eight
separate roles that classes can play in most class-based object-oriented languages [4], each of
these roles adding to the complexity of the whole language, which typically leads inexorably
to various kinds of infinite regress in meta-object systems [21, 29, 44].

To address this problem, prototype-based object-oriented languages, beginning with
Lieberman’s work inspired by LOGO [32] and popularised by Self [51], adopted a conceptually
simpler model in which objects were the primary concept, defined individually, without any
classes. Inheritance-like sharing of state and behaviour was handled by delegation between
objects, rather than inheritance between their defining classes. Special-purpose objects could
be defined directly, while new objects could be created in programs by cloning existing objects.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Timothy Jones, Michael Homer, James Noble, and Kim Bruce;
licensed under Creative Commons License CC-BY

30th European Conference on Object-Oriented Programming (ECOOP 2016).
Editors: Shriram Krishnamurthi and Benjamin S. Lerner; Article No. 13; pp. 13:1–13:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.13
http://dx.doi.org/10.4230/DARTS.2.1.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


13:2 Object Inheritance Without Classes

method graphic(canvas) {
object {

method image { abstract }
method draw { canvas.render(image) }
var name
canvas.register(self)
draw // Local method request

}
}

def amelia = object {
inherit graphic(canvas)
// Override using a field getter
def image = images.amelia
// Assign to inherited field
name := "Amelia"

}

Figure 1 An example object constructor method and an inheriting object.

Emerald [3] went one step further and aimed to eschew all implicit sharing mechanisms,
supporting neither inheritance nor delegation.

Programmers using object-based languages have found the need to reintroduce classes —
several times over in many of these languages. The Emerald compiler, and later the Self IDE,
added explicit support for class-style inheritance. Languages with object inheritance such
as Lua [34], JavaScript [46], and Tcl [52] have a variety of libraries implementing classes in
terms of objects. Most recently classes have been added explicitly to the recent ECMAScript
standard [53], to bring some order to the profusion of libraries already offering classes.

The problem we address in this paper is precisely the tension between the conceptual
simplicity of objects and the practical utility of classes: can a language be based conceptually
on ‘objects first’ and include a relatively familiar notion of inheritance? In this paper
we present models of eight inheritance mechanisms for a language without an inherent
class construct: forwarding, delegation, concatenation, merged identity, uniform identity,
multiple uniform identity, method transformations, and positional inheritance. The first
three correspond to the foundational object-based models, while merged identity and uniform
identity introduce more classical behaviour that parallels C++ and Java, and the remaining
models introduce multiple object inheritance with different conflict resolution techniques.

We evaluate the tradeoffs between power and complexity of these models, particularly in
their object initialisation semantics, and compare them to the behaviour of other languages,
demonstrating that the typical class initialisation semantics are fundamentally at odds
with prototypical object inheritance. We have also implemented all of the models in PLT
Redex [17], making the models executable and allowing direct comparison of the differences
in execution for any program.

2 Inheritance Without Classes

The term ‘inheritance’ typically refers to reuse relationships between classes, but there are
also a number of ‘objects-first’ languages that eschew classes and permit reuse relationships
directly between objects. Consider the example graphic method in Figure 1: the method
constructs a fresh object with some methods and a mutable (var) field, and runs some
initialisation code including a local call to the draw method before returning. If we can inherit
from objects created by this method, what is the resulting program behaviour? Results vary
for different interpretations of inheritance. We can inherit from the objects this method
creates, or assign special semantics to methods which directly construct fresh objects like
this and inherit from the method itself. Because of the presence of initialisation code in the
class, these interpretations have different — and potentially unexpected — behaviours.



T. Jones, M. Homer, J. Noble, and K. Bruce 13:3

In its most basic form, inheritance permits reuse by providing a mechanism for an object
to defer part of its implementation to an already implemented part of the program, but the
reality is that there is much more to consider: the value of ‘self’ in method bodies and during
initialisation, intended and accidental method overriding, whether objects are composed of
several object identities in an inheritance chain or a single unified identity, the meaning of
method requests which are not qualified with a receiver, and so on. We can draw different
conclusions about the state of our program after amelia in Figure 1 is constructed, depending
on which inheritance semantics is in play. We group these into our relevant concerns:

Registration. Is the identity of a super-object stored during initialisation, either
explicitly or through lexical capture, the same as the final object? This is clearly the
intention of the call to register in graphic’s initialisation.
Down-calls. Can a method in a super-object call down into a method in a lower object?
Can it do so during initialisation? The implementation of the draw method relies on a
down-call to the image method.
Action at a Distance. Can operations on an object implicitly affect another object?
If the registered graphic object is different to amelia, what is the value of its name field
after amelia is initialised?
Stability. Is the implementation of methods in an object the same throughout its
lifetime? Which image method will be invoked by the request to draw at the end of
graphic? Can the structural type of an object change after it has been constructed?
Preëxistence. Can an object inherit from any other object it has a reference to? Does
amelia have to inherit a call to the graphic method, or will a preëxisting object suffice?
Multiplicity. Can an object inherit from multiple other objects? If amelia also wished
to have the behavior of another object, can a second inherit clause be added? If so, how
are multiple methods with the same name resolved, and where are fields located?

We are also interested in the general semanticses of the inheritance systems, such as what
order the parts of initialisation execute in, what visibility and security concerns arise, and
how local method requests are resolved. We also point out particular curiosities, such as the
absence of overloaded methods from super references and inheriting from definitions already
inherited from some other parent, but these features are specific to individual models.

These are the concerns that we will judge in the following object inheritance models.
While our graphic example clearly assumes some of these features in its implementation,
these features are not universally desirable, and each provides certain abilities or guarantees
at some cost. Our intention is to use these concerns to provide an accurate description of the
tradeoffs involved with each inheritance model. Some of our models of inheritance attempt
to interpret graphic as a class, but only in the sense that it is a factory that guarantees fresh
graphic objects. We also compare the models to existing languages that use each form of
inheritance, particularly JavaScript, which is capable of implementing all of the models.

3 Graceless

In order to provide a formal semantics for the various object inheritance systems, we first
present a base model of the Grace programming language without inheritance, and then
proceed to extend this base model in different ways to construct the different behaviours.
Grace is a useful language to model object inheritance features in, as it is not class-based,
and it does not permit mutation of an existing object’s structure, so we can consider pure

ECOOP 2016



13:4 Object Inheritance Without Classes

Syntax

e ::= o | r.m(e) | m(e) | self | v | e; e | f x−→ | f x←− e (Expression)

S ::= def x = e | var x | var x := e | e (Statement)

M ::= method m(x) { e; e } (Method)

m ::= x | x:= (Method name)

o ::= object {M S } (Object expression)

σ ::= · | ` 7→ 〈F ,M〉, σ (Object store)

v ::= done | ` (Value)

r ::= e (Method receiver)

f ::= self | ` (Field receiver)

F ::= x 7→ v (Field)

s ::= v/x | self.m/m (Substitution)

Evaluation context

E ::= [] | E.m(e) | v.m(v,E, e) | m(v,E, e) | E; e | ` x←− E

Figure 2 The grammar of the Graceless base model, with runtime-only components boxed .

object concerns without being overcome by ‘open objects’ with trivially mutable structure,
as found in JavaScript.

Our core model resembles the existing Tinygrace language [28], but with more features,
such that ‘Tiny’ is not an appropriate moniker. As the language is still not a complete
implementation of Grace, we have opted to name it Graceless. We have modelled object
references, mutable and immutable fields, and method requests unqualified by a receiver, in
order to demonstrate the wide-ranging effects of changes to the behaviour of inheritance.
Explicit types have been removed, in order to focus on the dynamic semantics.

The grammar for Graceless is provided in Figure 2. The boxed areas in the grammar
represent forms which only exist at runtime, not in the user-side syntax of programs. As
in Grace, we omit empty argument and parameter parentheses, making some method
requests indistinguishable from local variables and field lookups per Meyer’s uniform access
principle [37]. Within an object are method definitions M and statements S. A statement
is either a field declaration or an expression, the latter allowing method requests in object
initialisation code. Field declarations are either constant definitions or variable, and var
fields may be declared without an initial value.

Expressions e in the user-side syntax are object expressions o, method requests either
qualified or unqualified by a receiver, or the sentinel value done. At runtime, expressions
can also include references ` to locations in the heap, sequences e; e, field fetch self x−→, and
field assign self x←− e, with self eventually substituted for some `. The field operations are
distinguished from method calls e.x and e.x := e.

Objects can be nested inside of each other (as method bodies) and unqualified requests
can be made on the resulting local scope. We assume Barendregt’s rule [1] for self references,
such that each self variable introduced by nested object expressions is unique. Because
method names appear in the local scope as well as the public interface of their directly
surrounding object, we cannot assume Barendregt’s rule that their names are unique — an
object may need to shadow an outer object’s method in order to conform to a given interface
— so substitution cannot continue past a shadowing definition.

Graceless has two forms of substitution. The typical substitution [v/x]e replaces the term x

with the value v in the term e. A qualifying substitution [self.m/m]e replaces any local request



T. Jones, M. Homer, J. Noble, and K. Bruce 13:5

〈σ, e〉 〈σ, e〉 (E-Context)
〈σ, e〉 〈σ′, e′〉

〈σ,E[e]〉 〈σ′, E[e′]〉

(E-Request)
method m(x) { e } ∈ σ(`)

〈σ, `.m(v)〉 〈σ, [`/self][v/x]e〉

(E-Next)

〈σ, v; e〉 〈σ, e〉

(E-Fetch)

〈σ, ` x−→〉 〈σ, σ(`)(x)〉

(E-Assign)

〈σ, ` x←− v〉 〈σ(`)(x 7→ v), done〉

(E-Object)
` fresh m = names(M,S) 〈Mf , e〉 = body(S)

〈σ, object {M S }〉 〈σ(` 7→ 〈∅, [self.m/m]M Mf 〉), [`/self][self.m/m]e; `〉
m unique

Auxiliary Definitions

names(method m(x) { e }, S) = m ∪mf where 〈method mf (y) { ef }, e〉 = body(S)

body(∅) = 〈∅,∅〉

body(def x = e, S) = 〈accessors(def, x, y) M, self y←− e e〉 where y fresh and 〈M, e〉′ = body(S)

body(var x, S) = 〈accessors(var, x, y) M, e〉 where y fresh and 〈M, e〉′ = body(S)

body(var x := e, S) = 〈accessors(var, x, y) M, self y←− e e〉 where y fresh and 〈M, e〉′ = body(S)

body(e, S) = 〈M, e e〉 where 〈M, e〉′ = body(S)

accessors(def, x, y) = method x { self y−→ }

accessors(var, x, y) = method x { self y−→ } method x:=(z) { self y←− z }

Figure 3 Term reduction.

m(e) with the qualified form self.m(e) in the term e. Both forms of substitution are ended
by a shadowing definition, which can be either an adjacent method name or a surrounding
parameter definition: substitutions into an object expression [v/x]o and [self.m/m]o do not
modify o if it contains a method x or m respectively, and the substitutions into a method
[v/x]M and [self.x/x]M do not modify the method body if M has a parameter x. Because
the local variable x and the local method request x are indistinguishable, the ordering of the
substitution matters: [self.x/x][v/x]x produces v, but [v/x][self.x/x]x produces self.x.

The reduction judgment 〈σ, e〉 〈σ′, e′〉 is defined in Figure 3, indicating an expression
e with store σ is reduced to an expression e′ with a potentially modified store σ′. Rule E-
Context uses the evaluation context to perform congruence reduction, and Rule E-Next
evaluates to the next expression in a sequence when the current one has finished evaluating.
Rules E-Fetch and E-Assign handle operations on a field store. The store access σ(`)(x)
looks up the field x in the object at location `, getting stuck if the field has not been initialised
yet. The store update σ(`)(x 7→ v) sets the field x to the value v in the object at location `,
introducing a new field if one was not already present.

Rule E-Request processes requests by looking up the corresponding method in the
receiver. In the method body, it substitutes both the arguments for parameter names, and
the receiver for the name self. Rule E-Object takes an object expression and builds a
corresponding object in the store, with no fields, the methods in the object expression, and

ECOOP 2016



13:6 Object Inheritance Without Classes

Extended Syntax

I ::= inherit e s (Inherit clause)

o ::= · · · | object { I M S } (Object expression)

s ::= · · · | (` as self)/super (Substitution)

v ::= · · · | (` as v) (Value)

r ::= · · · | super | (` as e) (Receiver)

〈σ, e〉 〈σ, e〉 (E-Request/Super)
method m(x) { e } ∈ σ(`↑)

〈σ, (`↑ as `↓).m(v)〉 〈σ, [`↓/self][v/x]e〉

(E-Inherit/Context)
〈σ, e〉 〈σ′, e′〉

〈σ, object { inherit e s M S }〉 〈σ′, object { inherit e′ s M S }〉

(E-Inherit)
〈F ,M↑〉 = σ(`) M ′

↑ = override(M↑,names(M,S))

〈σ, object { inherit ` s M S }〉 〈σ, object {M ′
↑ [s][(` as self)/super](M S) 〉 }

Auxiliary Definitions
override(∅,m) = ∅

override(method m(x) { e } M,m) =

{
m ∈ m override(M,m)

m /∈ m method m(x) { e } override(M,m)

Figure 4 Object inheritance extension.

the generated getter and setter methods for the fields. The rule also converts the fields in the
object expression into a series of assignments, which ultimately result in the new reference.
The internal field names are (globally) fresh to avoid having to worry about overridden
names under inheritance. Both the methods and the assignments have the relevant qualifying
substitutions applied, and the body of the object has self bound to the new reference.

Note that we could bind self in the bodies of an object’s methods either in the Rule E-
Object (early binding, when the object is allocated) or in Rule E-Request (late binding,
when a method is requested). In this model, either choice produces the same behaviour. As
we add inheritance to Graceless, our choice to use late binding in the base model will matter:
it is trivial to overwrite by also using early binding, but not the other way around.

4 Object Inheritance

We now extend Graceless with various implementations of object inheritance, and consider
the complexity and impacts of the changes. The extensions are presented in a rough ordering
of implementation complexity. These represent the three foundational strands of object
inheritance: forwarding, as used in E; delegation, as found in JavaScript [53], Lua [25], and
Self [51, 10]; and concatenation, as in Kevo [48, 49] and numerous libraries and idioms for
languages with open objects.

The extended syntax for object inheritance is given in Figure 4. The extension introduces
two new components of user-facing syntax: the bodies of object expressions may now begin
with an inherit e clause, and requests can now be qualified by the special variable super.



T. Jones, M. Homer, J. Noble, and K. Bruce 13:7

These two components each result in a runtime complication. This intermediate extension of
Graceless already implements a form of object inheritance similar to concatenation with all
fields reset to uninitialised, but we do not know of any language with this behaviour, nor can
we see why it would be desirable.

Inheritance introduces the methods from the super-object into the local scope of the
inheriting object using an ‘up, then out’ rule: inherited definitions take precedence over
those introduced in a surrounding scope. Because the inherit clause contains an arbitrary
expression, we might not know what the names are that the clause will introduce. To
counter this, substitutions are delayed by an inherit clause in an object expression: while the
substitution will transform the expression in the clause itself, it will not proceed into the
body of the object expression, and gets ‘stuck’ on the clause instead. Once the expression
in an inherit clause is resolved to an object reference, the substitution can proceed into the
body of the surrounding object expression, where it may be removed by shadowing.

Although there is an explicit super-object in this model of inheritance, making a request
to super is not the same as making a direct request to the super-object, as the value of self
will be bound to the inheriting object. At runtime, the variable super is substituted for a
special ‘up-call’ receiver (` as self), which indicates the method to call should be sourced
from the object at location `, but self in the body of that method should be bound to the
eventual value of self at the site of the request.

The evaluation context has not been extended as expected, to avoid issues in the future
with constraints on what can be evaluated in an inherit clause. Evaluation in an inherit
clause is instead handled by Rule E-Inherit/Context, which is modified by future models.
Rule E-Inherit transforms an object expression with an inherit clause into one without,
by copying the methods from the super-object which are not overridden by a method
with the same name into the body of the inheriting object (directly copying the methods
has the same behaviour as creating new methods which delegate to the super-object with
the same arguments, or searching through a chain of objects for the method, which is
representative of typical object inheritance implementations). It also applies the delayed
substitutions to the body, after substituting super for an up-call receiver to the inherited
object. Rule E-Request/Super simply applies an up-call as described.

By making subtle modifications to the existing rules in this extended form of Graceless,
we can produce models for various implementations of object inheritance.

4.1 Forwarding
Under forwarding, inherited methods are simply redirected to the super-object. The super-
method receives the same arguments and self binding. In the example from earlier, if amelia
receives a request for the draw method, which is not implemented directly inside of amelia,
the request is passed on to the graphic super-object instead. The value of self in the resulting
invocation is the identity of the super-object: in this example, the draw method crashes,
complaining the graphic has not implemented its image method, because the local request to
image has been resolved to the graphic object and not passed back down to amelia.

The modification to the existing Graceless dynamic semantics to implement forwarding
is provided in Figure 5. The modification makes one subtle change (highlighted ) to the
Rule E-Object, by early-binding the value of self when an object is created in both its
methods and field accessors. The result of this change is that the late-binding of self in
requests (both normal and to super) no longer achieves anything, because self has already
been bound to the object that the method or field originally appeared in. Any forwarded
request behaves as though the original object had received the request directly.

ECOOP 2016



13:8 Object Inheritance Without Classes

(E-Object/Forwarding)
` fresh m = names(M,S) 〈Mf , e〉 = body(S)

〈σ, object {M S }〉 〈σ(` 7→ 〈∅, [`/self]([self.m/m]M Mf )〉), [`/self][self.m/m]e; `〉
m unique

Figure 5 Forwarding modifications.

The value of self is always the object a method was defined in, so down-calls are not
possible; similarly, the value of self during initialisation is the distinct identity of the
super-object, so registration cannot occur then. In this model, an object can only inherit
from another before it has run any of its own initialisation, so every object has a stable
structure, but one object may be inherited many times. While this model does not permit
multiple super-objects, it would only require updating Rule E-Inherit to include methods
from multiple inherited objects, with some arbitrary mechanism to resolve multiply-defined
methods (such as placing significance on the order of the inherit clauses, or requiring that a
multiply-defined method be overridden in the inheriting object).

There is no concept of confidential access of methods between implementations, as a
forwarded request is sent as a regular request, and so will only be handled by the public
interface of the super-object. Forwarding also does not permit downcalls: an inherited object
cannot invoke an inheriting object’s method. On the other hand, an object can forward
messages to a preëxisting object, and many forwarding objects can share a single target.
Inherited fields are shared between all inheriting objects, and the mutation of an inherited
field will implicitly affect the super-object and all of its heirs.

In the E language, there is no explicit self reference, as all object definitions are explicitly
named. The authors of E refer to the language’s inheritance mechanism as “delegation”, but
in the absence of self references the behaviour aligns with what we have called forwarding.

def graphic { to draw() { canvas.render(graphic.image()) } }
def amelia extends graphic { to image() { images.cat() } }

Even though amelia defines a method image, the call in draw clearly looks for the method in
the graphic object. Methods cannot be requested on the local scope, so the receiver must
always be explicit. In order to achieve down-calls, the inheriting object must explicitly be
passed to the super-object, which is a standard pattern for simulating class behaviour in E.

4.2 Delegation
Delegation is an implementation of object inheritance that aimed to be at least as powerful as
inheritance, if not more so [32, 51, 33]. Delegation has a subtle distinction from forwarding:
a self request in a method called under delegation goes back to the original object, while
under forwarding a self request to a delegatee will be handled only by that delegatee. This
allows delegation to support down-calls, where forwarding cannot.

In the previous example, it was not safe to request the draw method on amelia under
forwarding, as the implementation of draw expects to be able to see an overridden implement-
ation of the image method. Under delegation, this now works as expected: draw executes
with self as amelia, so the local request to image calls down into amelia and successfully
retrieves the image of Amelia.

The modification to the existing Graceless dynamic semantics to implement delegation is
provided in Figure 6. Like forwarding, the modification early-binds the value of self in the



T. Jones, M. Homer, J. Noble, and K. Bruce 13:9

(E-Object/Delegation)
` fresh m = names(M,S) 〈Mf , e〉 = body(S)

〈σ, object {M S }〉 〈σ(` 7→ 〈∅, [self.m/m]M [`/self]Mf 〉), [`/self][self.m/m]e; `〉
m unique

Figure 6 Delegation modifications.

Rule E-Object, but this time only in the field accessors. The value of self remains late-bound
in the bodies of methods to the receiver of a method request, allowing super-objects to
perform down-calls to methods implemented in a sub-object. Fields are shared between the
original object and any inheriting objects, and, as under forwarding, mutation of any field
which originated in a super-object is reflected in all of its heirs.

Delegation makes no requirement of freshness, which combined with down-calls produces
a further complication to information hiding in a language with confidential methods that
can only be called on self. These methods may provide access to secret data or capabilities,
and the ability to access them from arbitrary code could be a security concern. Delegation to
preëxisting objects opens the way for the ‘vampire’ problem: any object to which a reference
has been obtained can be taken over and fully controlled from the outside, merely by defining
a new child object. If access to confidential methods is instead not provided to delegators,
simulating common classical patterns becomes difficult or impossible, and an odd asymmetry
is introduced: the delegator can override an inherited method, changing its behaviour, but
has no access to use the overridden method in its own implementation.

Unlike forwarding, delegation permits down-calls after the object has been constructed,
but not during initialisation. Objects under delegation cannot perform registration during
initialisation, as a captured self reference in a super-object refers to that super-object, which
may have no other references and will not have access to any overriding definitions from the
child. These two limitations of object initialisation are the major barriers to simulating the
typical behaviour of class-based inheritance under delegation.

Object structure and behaviour is not stable during construction, as new methods may
appear on self and existing methods may have different implementations depending on the
stage of inheritance. Like forwarding, delegation permits inheritance from a preëxisting
object; if this is allowed, stability does not exist after construction either. Delegation, like
forwarding, can be easily extended to multiple inheritance by introducing multiple inherit
clauses and some resolution of multiply-defined methods.

Including the inherit clause in the object constructor ensures that objects can delegate
either to a preëxisting prototype object or construct a new object with custom arguments
and delegate to that, as an equivalent to calling a super-constructor in a class system. This
distinguishes it from the prototypical inheritance in JavaScript, which requires that the
prototype property of the constructor be set before any inheriting object is constructed. In
Self, object expressions can set their parents as a fresh object constructor call:

( | parent* = factory new. | )

This has the same semantics in terms of self binding in the super-constructor as presented in
our model of delegation.

ECOOP 2016



13:10 Object Inheritance Without Classes

(E-Inherit/Concatenation)
〈x 7→ v,M↑〉 = σ(`) M ′

↑ = override(M↑, names(M,S))

〈σ, object { inherit ` s M S }〉 〈σ, object {M ′
↑ [s][(` as self)/super](M self x←− v S) 〉 }

Figure 7 Concatenation modification.

4.3 Concatenation
Concatenation is an alternative approach to both forwarding and delegation that aimed
to have the power of inheritance without the drawbacks of delegation [48, 49]. Under
concatenation, one object inherit from another by (conceptually) taking a shallow copy of the
methods and fields of its parent into itself, and then appending local overriding definitions.
Concatenation supports down-calls, but unlike delegation does not allow subsequent changes
in either the parent or the child to affect each other.

The modification to the existing Graceless dynamic semantics to implement concatenation
is provided in Figure 7. Unlike the previous two models, this modification instead changes
the Rule E-Inherit, to copy the fields from the super-object into the inheriting object as
assignments. The existing late-binding of self in methods is sufficient to provide the desired
behaviour: any inherited method executes in the context of the inheriting object, and any
request to an inherited field accessor will access the copied field in the inheriting object as well.
The only relationship the inheriting object has with its super-object is explicit up-calls, but
it is impossible to access or modify the state of the super-object without explicitly referring
to it through an existing reference. The resulting behaviour is equivalent to delegating to a
clone of the super-object.

Concatenation also makes no requirement of freshness. Concatenation with preëxisting
objects does not quite permit the ‘vampirism’ of delegation, but does allow ‘mind reading’:
any confidential state in an object can be read simply by inheriting from it, but the existing
object cannot be manipulated by the child. Unlike the two previous models, mutations to
inherited fields do not cause action at a distance, as the mutation will always affect a field in
the actual receiver of the request (even for super-calls). With lexical scoping, the two objects
are also not as independent as they seem: methods exist in the same scope in both objects,
and any lexically captured state is shared between the two.

Like delegation, concatenation permits down-calls after the object has been constructed,
but still not during construction. Concatenation does not allow registration, as a captured
self reference in a super-object refers to the parent. Object structure and behaviour is not
stable during construction; as for delegation, if inheritance from preëxisting objects is allowed
then stability does not exist afterwards either. Concatenation can be straightforwardly
extended to multiple inheritance by inserting the contents of each parent into the child, with
some resolution of multiply-defined methods.

Objects with mutable structure can trivially implement concatenation, by manually
copying the structure of the inherited object into the inheriting one. JavaScript complicates
this story with unenumerable properties, implicit field accessors, and existing delegation
relationships, but for the most part this is a valid implementation of concatenation:

for (var name in inherited) { inheriting[name] = inherited[name]; }

It is also possible to use mutable object structure to implement either forwarding or delegation,
by assigning methods (or field accessors) to the inheriting object that directly forward or
delegate to the inherited object, as in our models. In a JavaScript constructor:



T. Jones, M. Homer, J. Noble, and K. Bruce 13:11

(E-Inherit/Context)
〈σ, e〉 〈σ′, e′〉 e = v.m(v) =⇒ e′ = e; o

〈σ, object { inherit e s M S }〉 〈σ′, object { inherit e′ s M S }〉

Figure 8 Fresh inheritance modification.

var self = this;
this.foo = function () { self.bar(); };

If the foo method is called on a sub-object, the call to bar is guaranteed to not perform a
down-call, because self is bound directly to the original object.

JavaScript’s built-in object inheritance otherwise works the same way as Graceless
delegation, but field assignments are directly available in the language instead of only
through accessor methods. The result is that an object shares each field of its inherited
object, but when a field is assigned to it, the field is unique to that object, shadowing the
inherited one. In any language where the objects have mutable structure it is necessary
to retain a parent reference in order to implement delegation, in order to accurately defer
to the current implementation of a parent object. Implementing more complicated forms
of inheritance in JavaScript, such as with traits or mixins, tends to involve combining the
built-in delegation alongside manual concatenation.

5 Emulating Classes

The inheritance models in the previous section represent the three foundational strands
of purely object-based inheritance. Class-based languages tend to provide different se-
mantics, and programmers and language designers may wish to use those behaviours, or may
unconsciously expect object-based languages to behave similarly.

It is possible to construct object-based models that parallel many of these classical
behaviours. In some languages with very flexible semantics, such as JavaScript and Lua,
libraries exist to provide “classes” as a second-class construct by mutating objects or leveraging
specially-constructed objects with the existing inheritance systems [46, 34]. The two models
in this section approximate the inheritance behaviour of C++ (Section 5.1) and Java
(Section 5.2) in an object-based system. They remain purely object-based, but trade off
some of the flexibilities of the object inheritance models for the classical functionalities they
provide, such as registration, down-calls, and stability.

The new models use as their base a further extension to Graceless inheritance, provided
in Figure 8, which enforces that the inherited object is a ‘fresh’ reference. This extension
modifies Rule E-Inherit/Context so that method requests ready to be computed directly
in an inherit clause may only be reduced if they syntactically return an object expression.
This modification to the rule still permits the object constructor to then be resolved to a
reference before handling the inherit clause.

The requirement of strict syntactic freshness is not required for merged identity, but it pre-
vents potentially dangerous manipulation of object identity from outside of an object’s creator.
Merged identity builds directly on the new extension, while uniform identity further modifies
the context rule to also prevent an object expression from being computed in an inherit clause.

ECOOP 2016



13:12 Object Inheritance Without Classes

(E-Inherit/Merged)
〈F ,M↑〉 = σ(`) `↑ fresh m↓ = names(M,S)

M ′
↑ = override(M↑,m↓) m = m↓ ∪ names(M ′

↑,∅) 〈Mf , e〉 = body(S)

〈σ, object { inherit ` s M S }〉 
〈σ( `↑ 7→ 〈∅,M↑〉 )(` 7→ 〈F ,M ′

↑ [s][self.m/m][(`↑ as self)/super]M Mf 〉),
[s][`/self][self.m/m][(`↑ as self)/super]e; ` 〉

m unique

Figure 9 Merged identity modification.

5.1 Merged Identity

In this model, an inheriting object takes over the identity of its parent, ‘becoming’ that object
but putting in place all of its own method definitions, in effect the reverse of concatenation.
The parent object is constructed and initialised before the child, and then mutated at the
point of inheritance. Rather than mutating preëxisting objects, inheritance must now occur
from a fresh object, one newly created and immediately returned from a method call. Without
the requirement of freshness, objects can directly steal the identity of any existing object: the
resulting ‘body-snatchers’ problem is substantially worse than delegation’s vampirism, which
can only control objects internally. Overridden methods from the parent remain accessible
through super, and will always execute with the final identity of the object.

Merged identity provides essentially the C++ inheritance behaviour: the apparent type
of the object changes during construction, as each layer of inheritance is processed. After
object construction is complete, down-calls resolve to their final overridden method, but until
then they obtain the most recent definition from ((great-)grand)parent to child.

The use of self for registration in graphic will now correctly store the value of amelia
when initialising the super-object. Although the object is not amelia when it is registered,
amelia becomes the object that was registered once it has finished initialising, merging the
two identities together. The initialisation of amelia will still fail at the local request of draw,
because amelia’s overriding of the abstract method has not yet been merged into the identity
of the object.

The modification to Graceless with fresh inheritance to implement merged identity is
provided in Figure 9. The Rule E-Inherit/Merged overwrites the existing Rule E-Inherit.
Where the old rule resulted in a new object expression with some of the methods from
the super-object, this new rule skips straight to returning the resulting reference. This is
necessary because the resulting reference is not fresh: it is the reference of the inherited
object. The inherited object is updated with the new methods in the store, including keeping
all of the old field values, but removing overridden methods.

The new rule is a combination of the behaviour of the old E-Inherit and Rule E-Object.
We have highlighted the changes to their combined behaviour. There is no longer an object
which corresponds to super to perform an up-call substitution on the body of the object as in
Rule E-Inherit, so rather than creating a fresh location for the resulting object, we create
a fresh location for the super-object instead. The super-object has all of the methods of
the inherited object before it was modified, while the merged object retains its own fields
instead of beginning with an empty field store. All of the models which emulate classes with
super-references create these ‘part-objects’, which exist purely to store the super-methods for
super calls, never have any fields of their own, and are only ever referenced under an alias
for the ‘real’ object that is bottom-most in the hierarchy.



T. Jones, M. Homer, J. Noble, and K. Bruce 13:13

Like delegation, merged identity enables down-calls after, but not during, initialisation.
Unlike delegation, a single identity is preserved throughout the construction process, so
registration is possible. It does not provide classical stability during initialisation, but once
objects are complete they cannot change again. The meta-mutation of merging objects
means that it unsafe to permit inheritance from arbitrary objects, so only freshly-constructed
objects are valid parents. Merged identity is really the only model presented in this paper
that does not lend itself well to multiple inheritance, because only a single parent can have
its identity preserved.

As a reverse form of concatenation, merged identity is just as easy to implement for objects
with mutable structure. A constructor can call into the super-constructor, then concatenate
its own definitions into the resulting object. Copying the original object beforehand ensures
that a super-reference is still available.

5.2 Uniform Identity
The uniform identity design is a direct attempt to match as closely as possible the behaviour
of a typical class-based inheritance system, but based on objects rather than on classes. In
this design, the first observable action is to create a new object identity in the bottom-most
‘child’ object constructor; this exactly mirrors the merged identity design, which creates a
single identity of the topmost parent. All inherited declarations are assembled in a single
object associated with this identity, but no fields are initialised and no inline code run
until the direct inheritance completes. Inheritance occurs with the identity “passed along”:
declarations are attached to the original object, without initialisation, until the topmost
object with no parent is reached. Finally, the initialisation code runs from top to bottom.

All initialisation occurs in the context of the final object, including its behaviour. No new
methods or overrides are added visibly during construction. While initialisation code always
sees objects as a consistent type, it may observe uninitialised fields, including constant fields.
We model uninitialised field access as a fatal error, and leave static detection to a higher layer
in the language. This model essentially aligns with the semantics of Java-like languages.

The behaviour of amelia is the same as in the merged identity semantics, except that
the local request to draw in the initialisation of graphic now successfully down-calls into
amelia’s implementation, as the object is amelia during all initialisation in the hierarchy. The
result is still an error, as amelia’s initialisation of the image field has not yet been executed.
Super-constructors may still encounter uninitialised fields that will be assigned to in some
sub-constructor, particularly when methods can be overridden by fields.

The modification to Graceless with fresh inheritance to implement uniform identity is
provided in Figure 10. As with merged identity, the Rule E-Inherit/Uniform overwrites
the existing Rule E-Inherit. The Rule E-Inherit/Context has been further refined to
also prevent the evaluation of object expressions directly inside an inherit clause.

Where Rule E-Inherit/Merged was a modified application of E-Inherit and then E-
Object, the uniform identity modification applies this in reverse. As the body of the inherit
clause is an object expression, we have to apply many of the same processes for reducing a
regular object expression, but then move the sequence of expressions resulting from the body
of the super-object down into the body of the inheriting object. The evaluation does create a
new object reference for the super-object, but only for up-calls to super. All fields will end
up in the ultimate inheriting object.

Because the inherited object expression has not been processed into a runtime object,
the rule needs to manually build its field methods and body. The substitutions to local
definitions m need to be applied to the inherited methods (both those in the store, and the

ECOOP 2016



13:14 Object Inheritance Without Classes

(E-Inherit/Context)
〈σ, e〉 〈σ′, e′〉 e = v.m(v) =⇒ e′ = e; o e 6= o

〈σ, object { inherit e s M S }〉 〈σ′, object { inherit e′ s M S }〉

(E-Inherit/Uniform)
` fresh m = names(M,S) M↑ = [self.m/m]M

〈Mf , e〉 = body(S) m↓ = names(M↓, S↓) M ′
↑ = override(M↑ Mf ,m↓)

〈σ, object { inherit object {M S } s M↓ S↓ }〉 〈σ(` 7→ 〈∅,M↑ Mf 〉),
object {M ′

↑ [s][(` as self)/super]M↓ [self.m/m]e [s][(` as self)/super]S↓ }〉

m unique

Figure 10 Uniform identity inheritance modification.

non-overridden methods in the inheriting object). The same substitution into the body of the
inheriting object occurs as before, but now self is not bound in the body: self will be bound
by the ultimate application of Rule E-Object. The substitutions applied simultaneously to
M↓ and S↓ in the inheriting object by Rule E-Inherit now have to be split between the
two, as the super-body e appears in between, but it amounts to the same behaviour.

Uniform identity permits down-calls both after and during construction, as well as
registration, as the identity and structure of the object are both constant, also guaranteeing
stability. It does not allow inheriting from preëxisting objects, instead requiring that parents
be fresh. It does not support multiple inheritance, but there is a logical extension to do so.

Constructors have a special role in JavaScript, and must have their prototype property
set before they are used to construct a new object. As a result, inheriting from a preëxisting
prototype object is simple, but inheriting from another constructor, particularly one that
requires arguments specific to a particular inheriting object, is more difficult. Object.create
allows the creation of an object from a prototype without actually invoking the constructor:

function Bar(arg) { Foo.call(this, arg); }
Bar.prototype = Object.create(Foo.prototype);

The ability to bind the value of this in a function call allows JavaScript to implement uniform
identity, ensuring that the initialisation code in a super-constructor can be executed in the
context of the inheriting object instead of creating a fresh object and inheriting from that.
JavaScript’s class syntax, introduced by ECMAScript 2015, is just sugar for this behaviour.

The most natural forms of inheritance in JavaScript are the built-in single delegation
and, by extension, single uniform inheritance, now codified directly in the language with the
class syntax. Our primary concern is that without the particular dynamism of the necessary
JavaScript features, simulating class initialisation is impossible without reinterpreting factory
methods as constructors with special semantics, at which point the language has arguably
just implemented classes.

6 Multiple Inheritance

Reusing behaviour from multiple parents is a widespread desire, but is less commonly
supported in language designs in practice. In this section we show three logical extensions
enabling multiple object inheritance. The first extends the uniform identity model with
multiple inherit statements. The second is a separate model following the tradition of trait
systems, where method names are unique in any object. The third extends any of the



T. Jones, M. Homer, J. Noble, and K. Bruce 13:15

base models with the ability to include multiple inherit statements in an object, processed
imperatively. All of these extensions process inherit clauses as under uniform identity,
but they could all be simplified to perform inheritance from preëxisting objects as per
forwarding, delegation, or concatenation. We have demonstrated this by constructing all
possible combinations in our Redex implementation.

All systems enable code reuse from arbitrarily-many parents. All parents are treated
symmetrically in the first two models, but further restrictions or privileges could be accorded
to some parents without substantially affecting the models. In order to handle conflicts in
symmetric inheritance, methods can be abstract in their body, which causes an error if that
method is called. Alternatively, the implementations could ban the construction of an object
with abstract methods, but this would only be valid for uniform identity, as the overriding of
a concrete implementation would not take effect until the object was inherited under any of
the other interpretations.

6.1 Multiple Uniform
The multiple uniform model allows a sequence of inherit statements to appear at the start of
an object body. Each statement includes an as name clause, which binds name locally to have
super semantics with regard to that inheritance tree. The single-inheritance uniform identity
model is recovered with inherit parent as super. When the same method name is inherited
from multiple parents, none has priority and an abstract method of that name is inserted
instead. The programmer must provide a local override calling the version from a particular
named parent if desired. All methods are collected and installed before any initialisation
code from the object bodies executes, so a consistent set of method implementations is seen
throughout the initialisation.

The implementation of multiple uniform identity is presented in Figure 11, as an extension
to Graceless inheritance with the caveat that super is no longer a special form of receiver.
The Rule E-Inherit/Context implements fresh inheritance in objects with potentially
multiple inherit clauses, ensuring each clause is evaluated in order.

Rule E-Inherit/Multiple is essentially the same as Rule E-Inherit/Uniform, but
processing multiple inherit clauses at once (hence the extra multiplicities for many of the
bindings). Once all of the super-methods are collected, conflicting methods are resolved with
the join auxiliary function that, for each unique method name in the collection of methods,
accepts exactly one concrete implementation of a method with that name and removes all
of the abstract implementations, or provides a single abstract method with that name and
removes all other implementations.

Multiple uniform supports registration and downcalls exactly as in uniform identity. It
supports multiple inheritance from freshly-created parents, and is stable because methods
are collected first. These are all properties of uniform inheritance: applying this modification
to the simpler object inheritance models each retains their own particular properties as well.

6.2 Method Transformations
Multiple inheritance under method transformations resembles trait-like composition of
objects, representing object values as a single mapping of method names to methods, with
no equivalent to super in the previous designs. Instead, an inherit statement can have any
number of alias or exclude clauses associated, which respectively create an alternative name
for an inherited method and exclude its implementation. If a method is overridden locally
and still needs to be accessed, the inherited method can be aliased to a different name and

ECOOP 2016



13:16 Object Inheritance Without Classes

Extended Syntax
I ::= inherit e as x (Inherit clause)

e ::= · · · | abstract (Expression)

o ::= object { I s M S } (Object expression)

s ::= · · · | (` as self)/x (Substitution)

Io ::= inherit object {M S } as x (Evaluated inherit clause)

(E-Inherit/Context)
〈σ, e〉 〈σ′, e′〉 e = v.m(v) =⇒ e′ = e; o e 6= o

〈σ, object { Io inherit e I M S }〉 〈σ′, object { Io inherit e′ I M S }〉

(E-Inherit/Multiple)
` fresh m = names(M,S) M ′ = [self.m/m]M 〈Mf , e〉 = body(S)

M↑ = join(M ′ Mf ) m↓ = names(M↓, S↓) M ′
↑ = override(M↑,m↓)

〈σ, object { inherit object {M S } as x s M↓ S↓ }〉 〈σ(` 7→ 〈∅,M ′ Mf 〉),
object {M ′

↑ [s][(` as self)/x]M↓ [self.m/m]e [s][(` as self)/x]S↓ }〉

m unique

Auxiliary Definitions

join(∅) = ∅

join(method m(x) { e } M) =


m /∈ names(M, ∅) method m(x) { e } join(M)

e ≡ abstract join(M)

method m(y) { abstract } ∈M join(M method m(x) { e })

otherwise method m { abstract } join(override(M, m))

Figure 11 Multiple uniform identity modification.

accessed through that name within the object. An object contains at most one method with
any given name, and there are no part-objects.

Multiple inherit statements can appear in an object, treated symmetrically. If the same
name is inherited from multiple parents, all but one must be excluded, or a local overriding
method declared, if a concrete implementation of that method is to appear in the object.
All inheritance expressions are evaluated and the final method set of the object assembled
before any initialisation code executes. Initialisation occurs from top to bottom (depth-first
search) within each branch of the inheritance hierarchy. Methods are decoupled from their
names because aliases may provide multiple equivalent names all reaching the method, while
exclusion means that local definitions may not be implemented in the final object.

If amelia wished to simultaneously be a graphic and a gunslinger, then two inherit clauses
can be included under the transformation model. If the gunslinger class also contained a draw
method for drawing her gun, amelia would be required to choose a single implementation by
excluding one of the two. The excluded method can still be accessed if it is aliased:

def amelia = object {
inherit gunslinger
inherit graphic alias draw as render exclude draw
def image = images.amelia
var name := "Amelia"

}

Even if the gunslinger class also has a name method, amelia has successfully combined the two
by overriding both. Note that method resolution is consistent throughout the entire object:



T. Jones, M. Homer, J. Noble, and K. Bruce 13:17

Extended Syntax

I ::= inherit e alias m as m exclude m (Inherit clause)

(E-Inherit/Transform)
` fresh m = names(M,S) M ′ = [self.m/m]M 〈Mf , e〉 = body(S)

Ma = aliases(ma as m′
a,M ′ Mf ) Me = excludes(me,Ma) M↑ = join(Me )

m↓ = names(M↓, S↓) M ′
↑ = override(M↑,m↓)

〈σ, object { inherit object {M S } alias ma as m′
a exclude me s M↓ S↓ }〉 

〈σ , object {M ′
↑ [s]M↓ [self.m/m]e [s]S↓ }〉

m unique

Auxiliary Definitions

aliases(∅,M) = M aliases(m as m′ m as m′,M) = aliases(m as m′, alias(M,m as m′))

excludes(∅,M) = M excludes(m m,M) = excludes(m, exclude(M,m))

alias(∅,m as m′) = ∅

alias(method m(x) { e } M,m as m′) = method m(x) { e } method m′(x) { e } alias(M,m as m′)

alias(M M,m as m′) = M alias(M,m as m′)

exclude(∅,m) = ∅

exclude(method m(x) { e } M,m) = method m { abstract } exclude(M,m)

exclude(M M,m) = M exclude(M,m)

Figure 12 Method transformation modification, with context rule omitted.

the local request to draw in the graphic initialisation will unholster instead of rendering.
The implementation of method transformation multiple uniform inheritance is given in

Figure 12 as a modification of the previous uniform multiple inheritance extension. Inherit
clauses no longer have super-names, using the method aliasing and excluding syntax instead.
The obvious modifications to the context rule to account for method transformations instead
of super-names are omitted.

Rule E-Inherit/Transform pre-processes the methods of each inherited object before
passing them to join, with the aliases and excludes auxiliary functions. Both of these
functions proceeds as expected: fold the transformations over the methods, applying the
alias or exclude rules in order. Because these rules are ordered, it is possible to create an
alias of an existing alias that occurs earlier in the list, and it is possible to exclude aliases.
Exclusion is always processed after aliases, so a directly excluded method cannot be aliased.

Uniform method transformation permits both down-calls and registration. It provides
stability through time, but not through local analysis of visible declarations. It imposes
the same freshness requirements as the other models, and supports multiple inheritance.
Applying method transformation to the simpler object inheritance models continues to
maintain their own particular properties, as they were never stable to begin with.

6.3 Positional

The previous multiple inheritance models treated the inherit clauses as symmetric, such that
no definition in any one was preferred in the case of conflicts, requiring resolution either by

ECOOP 2016



13:18 Object Inheritance Without Classes

overriding or method transformations. Moreover, they did not permit any initialisation until
all of the direct inheritance was completed. This can be a problem if, for instance, fields
need to be initialised for down-calls in super-initialisation code, as with amelia’s image field.
Positional inheritance addresses these concerns, at the cost of visibly mutating the object
during construction, similarly to what can be achieved with mutable object structure.

Under positional inheritance, multiple inherit clauses can appear in an object, amongst
the typical statements. These inheritances are processed imperatively where they appear, in
order, using the same semantics as the selected base model of inheritance. As under multiple
uniform, each inherit statement can have a name associated. Positional could also be used
for single inheritance, allowing some initialisation before the super-constructor is called, but
the visible mutation is still present, and the distinct ordering of the inherit clauses in an
object body implies a natural method conflict resolution.

In the most general version, an inherit clause can appear anywhere in the object body,
and have other code before, after, and in between, with the semantics of the inheritance
taking effect at the point of appearance and later parents having precedence over earlier.
This allows some interesting programmer choices with some of the base models. Altering the
order of parents affects which versions of same-named methods are accessed, and interleaving
other code in between exposes both at different times. The availability and safety of upcalls
and down-calls are affected by the placement of the inheritance, field initialisation, and other
code. A more restrained approach could limit inheritance to appearing all at the top (or at
the bottom) of the object body.

Positional delegation with named supers is essentially the behaviour of Self [10], where
multiple parent pointers may exist in a single object; Self does not allow initialisation code to
execute in the context of the object under construction or have any priority between parents,
but does allow parent pointers to be mutable. The nature of concatenation fundamentally
supports positional multiple inheritance, simply copying in the contents of the inherited
object in place of the inherit statement, and the limitation in the base model was purely
syntactic. Named supers (or a next-method functionality) are also necessary to access
overridden methods. Multiple forwarding is quite straightforward, and strictly named supers
are not required: because forwarding only accesses the public interface, an ordinary reference
to each parent suffices. One of the primary use-cases of positional inheritance — initialising
fields before invoking a super-constructor — is irrelevant without uniform identity, as the
super-constructor cannot make a down-call into the inheriting object anyway.

Merged identity does not lend itself to the positional extension because it relies on taking
over the identity of the parent object, which with multiple parents would result in repeated
identity changes, some of which may even lose methods. A different extension could merge
multiple identities together, or resolve the resulting issues in some other way, but we do not
address this combination here and simply exclude it from consideration as confusing at best.

Positional inheritance is the only one of our multiple-inheritance models that permits
inheriting from something obtained from a parent. A parent could define a number of
specialised “inner classes”, with the intention that its child would in turn inherit from one of
those specialisations as well. It is not obvious to us that such an ability is useful, but nor is
it obvious that it is not. We note this unique ability, but do not pursue it further. The most
interesting version of positional inheritance is based on uniform identity, so we will focus
on that extension for the remainder of this section. Each inherit is processed in order of
appearance, using the same structure-then-initialisation process as under uniform identity.
Again, a single identity exists for all initialisation, and again down-calls are valid throughout.



T. Jones, M. Homer, J. Noble, and K. Bruce 13:19

Extended Syntax

e ::= · · · | super inherit e as x s | i inherit e as x s (Expression)

S ::= · · · | inherit e as x (Statement)

o ::= object { s M S } (Object expression)

s ::= · · · | (` as `)/x | i/super (Substitution)

r ::= · · · | (` as `) (Receiver)

i ::= 〈`,M, s〉 (Inherit context)

(E-Object/Positional)
` fresh m = names(M,S) 〈Mf , e〉 = body(S)

〈σ, object { s M S }〉 
〈σ(` 7→ 〈∅, [s][self.m/m]M Mf 〉), [s][〈`,M Mf , s〉/super][`/self][self.m/m]e; `〉

m unique

(E-Inherit/Positional)
` fresh m = names(M,S) M↑ = [s↑][self.m/m]M

〈Mf , e↑〉 = body(S) `↓ = first(last(i)) i′ = add-subst((` as `↓)/x, i)

〈σ, i inherit object { s↑ M S } as x s; e〉 〈update(σ(` 7→ 〈∅,M↑ Mf 〉),M↑ Mf , i′) ,
[s↑][〈`,M Mf , s↑〉 i′/super][`↓/self][self.m/m]e↑; [s][self.m/m][i′/super][(` as `↓)/x]e 〉

m unique

Extended Auxiliary Definitions

body(inherit e as x S) = 〈M, super inherit e as x e〉 where 〈M, e〉 = body(S)

add-subst(s, 〈`,M, s〉 i) = 〈`,M, s s〉 i

update(σ,M↑,∅) = σ

update(σ,M↑, 〈`,M, s〉 i) = update(σ(` 7→ 〈F ,M ′
↑ M

′ M ′
↓〉),M ′

↑ M
′, i)

where m = names(M,∅)andm↑ = names(M↑,∅)andM ′
↑ = override(M↑,m)and 〈F ,M↓〉 = σ(`)

and m↓ = names(M↓,∅) and M ′ = [s][self.m↑/m↑][self.m↓/m↓]M and M ′
↓ = override(M↓,mm↑)

Figure 13 Positional uniform identity modification, with context rule omitted.

Positional inheritance reintroduces mutation during construction to uniform identity,
because each inherit adds new methods to the object. When multiple methods are inherited
by the same name, the last-inherited method wins out. An unusual aspect is that while
down-calls are always available, during construction ‘side-calls’ to co-parents of a common
child can be made only to parents whose inherit preceded this one. An object can even define
a fresh constructor directly inside of itself, and then inherit from it.

Each line of initialisation occurs after preceding inheritance statements and before
subsequent inheritance statements. If inherit precedes a field initialisation or other expression,
upcalls to that parent are available from that expression; if inherit follows a field initialisation,
down-calls from that parent accessing that field are safe.

The implementation of positional uniform identity inheritance is provided in Figure 13
as an extension to the core Graceless language; the rule for fresh inheritance is omitted
again. The primary difficulty with implementing positional inheritance is that the meaning
of local definitions can change imperatively: a local request might refer to some definition
in the surrounding scope, but after processing an inherit clause during the initialisation

ECOOP 2016



13:20 Object Inheritance Without Classes

phase that request might now refer to an inherited definition instead. This presents a
particular difficulty for substitution, which irreversibly binds an unqualified name to a
particular definition. Substitutions are now delayed by all object expressions, as the inherit
clauses are now nested in the object statements. Rule E-Object/Positional replaces the
Rule E-Object, handling the new statement form with the updated body translation and
applying the delayed substitution.

In order to implement the dynamic scoping, we introduce an inherit context i, which
records the reference ` of the object that an inherit clause appeared inside, the source of the
methods M that appeared directly in that object, and the delayed substitutions s that were
on that object. Any processed inherit clause has an ordered stack of these contexts on it,
from the actual object the inherit clause appeared in, down to the bottom-most inheriting
object. The super prefix is used as a placeholder on newly created inherit expressions, so
that Rule E-Object/Positional can substitute it out for the initial inherit context.

By retaining the source of the methods and the substitution scope they appeared in, the
methods can be re-substituted in any new scope that appears. The update auxiliary function
applies this for any newly inherited methods M↑ to every object in the current stack of
contexts. Rule E-Inherit/Positional handles any inherit expression, constructing a new
part-object `, and using update to include the new methods in the original object and every
intervening part-object, after applying overrides from the existing methods. The value of self
is bound in the inherited object body by the last object reference in the inherit context, as
that is the location of the original object. The inherited body is processed in the same way
as in Rule E-Object/Positional. One of the key distinctions here is that the value of self
to substitute in the inherited body already exists, whereas under single uniform identity the
body is concatenated into an object expression and self is substituted once that is evaluated.

Note that inherit expressions still delay substitutions, preventing them from applying to
expressions later in any sequence. After each inherit expression is evaluated, the substitutions
are then applied to the following expressions, after being shadowed by inherited definitions
and the super-name defined by the as clause. Positional uniform inheritance preserves the
other traits of uniform identity from Section 5.2, with the exception of stability: during
construction, an object’s apparent structure and behaviour can change. Applied to the
simpler object inheritance models, it preserves each of their unique properties.

7 Discussion

Table 1 compares the models according to the criteria established in Section 2. Each model
provides a different mix of the criteria, which may be appropriate for different circumstances
or languages. The uniform identity design provides the closest match to Java semantics
(given at the bottom of the table) while the other multiple-inheritance models following trade
off one or more of these properties. No model provides every property; indeed, stability,
downcalls, and inheriting from existing objects are fundamentally in conflict. As well, the
complexity of each design and its implementation roughly increases down the table, which is
a further trade-off for language designers to consider.

While delegation, forwarding, and concatenation can fundamentally support inheriting
from arbitrary objects, the other models lean towards supporting planned reuse rather than
ad-hoc reuse — that is, inheriting from objects that have been designed to be inherited
from, rather than from any arbitrary object. Both planned and unplanned reuse have solid
software-engineering motivations; indeed, language features exist both specifically to prevent
inheritance (final or sealed classes) and to enable ad-hoc reuse (structural types).



T. Jones, M. Homer, J. Noble, and K. Bruce 13:21

Table 1 Comparison of models of object-first inheritance. * indicates answer holds during
construction, but is reversed after. Overload indicates multiple definitions of the same method name
in an object, accessible through super-references. Parent indicates ability to inherit from something
obtained through another parent. All other columns relate to criteria from Section 2.

Reg. Down. Dist. Stable Exist. Mult. Overl. Par.
Forwarding no no yes yes yes no yes no
Delegation no no* yes no yes no yes no
Concatenation no no* no no yes no yes no
Merged yes no* no no* fresh no yes no
Uniform yes yes no yes fresh no yes no
Mult. Uniform yes yes no yes fresh yes yes no
Transform U. yes yes no no fresh yes no no
Positional U. yes yes no no fresh yes yes yes

Java yes yes no yes class no yes no

We do not wish to present one or another choice as better, but to draw attention to a
potentially-unintended side effect of various points in the solution space. Nonetheless, it
is possible for any of the fresh-object–based systems to support delegation or forwarding
semantics simply by exposing a method, accepting any object as an argument, that returns
a fresh object whose methods provide the behaviour in question. Concatenation semantics
can similarly be supported by inheriting from a standard clone.

Diamond inheritance (repeatedly inheriting from the same class or trait two or more
times) has long been recognised as a problem in object-oriented language design. Eiffel and
C++ both offer the same essential solution to the problem: arranging that some classes
can be replicated each time they are inherited, while other classes will be inherited only
once. Malayeri and Aldrich [36] present a good discussion of the problems diamonds cause
for inheritance, and then argue that diamond inheritance can be prevented in languages,
partly by supporting a requires clause inspired by Scala which indicates that a trait depends
upon the eventual final self object providing a set of methods, but not actually implementing
those methods itself. The two multiple-inheritance systems we describe are open to this
sort of collaboration, but do not require it. Because they are object-based, rather than
class-based, some issues of diamond inheritance do not arise, as each instance of a parent is
(unavoidably) separately obtained and constructed. In an object-based system, coalescing
similar ancestors is a dubious activity, as side effects may occur on the path to construction
and be semantically meaningful, which cannot happen in a static, declarative class system.

In our formal model we have made a conscious effort to handle as many errors as possible
in the operational semantics (i.e., at run time) rather than by defining erroneous programs as
ill-formed (i.e., at compile time). There are several reasons for this, but most important is that
we see further layers on top—such as type systems or checks for diamond inheritance—as
an important, but separable part of the design process. Omitting such definitions highlights
the inheritance designs, and enables the core language of the model to be smaller and more
general. In fact, a language could provide the ability to impose additional families of static
restrictions at the surface level [23].

Similarly, we take a pragmatic approach to object initialisation: access to uninitialised
variables raises a runtime error. This choice has helped simplify our inheritance designs, as
we have not needed to contort the models to ensure that e.g. all variables are definitively
initialised. Just as a range of static type systems can be layered over the language’s semantics,
so we expect that a safe initialisation scheme, such as Delayed Types [16], Masked Types [42],

ECOOP 2016



13:22 Object Inheritance Without Classes

Hard Hats [20, 54], Freedom Before Commitment [47], or the Billion Dollar Fix [43] should
be able to to be layered on top of the initialisation semantics in the model. Highlighting
where such runtime errors are liable to occur in the different designs helps language designers
to choose where to trade off for or against additional safety.

8 Related Work

Class-based object-oriented languages begin with SIMULA [2], and much of the conceptual
framework of object-orientation descends from the Scandinavian school founded by Dahl
and Nygaard, viewing programming as simulation, and consequently programs as models
of phenomena in the real world [35]. Taivalsaari argues the class-based understanding of
programming is also ‘classical’ in the sense of descending from the classical philosophy of
Plato and Aristotle [49].

Simula’s model of objects as instances of classes was greatly expanded on by Smalltalk [4]:
unlike SIMULA, Smalltalk classes are also instances of other (meta-) classes themselves,
importing the power (and also the complexity) of Lisp-style computational reflection into
object-oriented languages [45]. Lisp then returned the favour with a series of object-oriented
extensions culminating in the CLOS Meta-Object Protocol [29]. We also owe the notion of
‘static’ (per class) declarations, distinct from per-instance declarations, to Smalltalk.

The complexity of Smalltalk’s meta-model clearly inspired Lieberman to propose languages
based purely on objects, with delegation as the sharing mechanism [32], which then led
to a general interest in ‘prototype-based’ programming languages, i.e. languages, following
Self [51] that create new instances by copying existing instances, rather than by an apostrophe
to a class. Emerald [3] also lacked classes, but objects were created by literal expressions.

The fates of Emerald and Self are instructive. By 1991 Emerald had a “syntactic construct
called a class that provides the functionality normally expected of classes” [24]. At the same
time, Self’s programming style was based on separate objects corresponding to instance
prototypes (defining all the instance variables in one object) and method suits (called “traits”)
with each conceptual class giving rise to both a trait, and a prototype delegating to that trait;
traits were also linked by delegation corresponding to the conceptual class inheritance [50].
By 1995, Self objects were effectively given a single “copy down parent” attribute, and
slots from that object would be copied into the object whenever it was edited. This is how
e.g. if an extra ‘z’ slot was added into the graphic object, it would also be added into the
gRectangle object. Eventually, a “Subclass me” button was added to the IDE, which copied
both instance object and trait objects, recreating the class-like structure with delegation and
copy-down parent links configured correctly.

Dony et al. modelled a range of different designs for class-, object-, and prototype- based
languages, although by writing a software product line of definitional interpreters in Smalltalk,
rather than modelling language features formally [13, 12]. Taivalsaari et al. [40] surveyed
other contemporaneous research along these lines.

Relatively early on, Eiffel incorporated a sophisticated class-based multiple inheritance
with deep renaming (rather than shallow aliasing) and exclusion (‘undefine’) and repeated
inheritance [38]. Eiffel’s design has many advantages, notably that an object implementing
several different types can have multiple implementations of methods with the same name,
depending on the type in which those definitions originate. Eiffel’s development environment
can generate the ‘flat form’ of the class: unfortunately because of Eiffel’s type-aware semantics,
the flattened form cannot represent all the possible behaviours of the class. Over the years,
other languages incorporated many of the features of Eiffel’s design, notably C++.



T. Jones, M. Homer, J. Noble, and K. Bruce 13:23

The other main stream of work is based on mixins, rather than classes [7]. Unlike CLOS
or Eiffel multiple superclasses, mixins are applied one at a time, in a linear order specified by
the programmer. Bracha’s Jigsaw formalised mixin composition in a class-based style, along
with a rich trait algebra including merge, restrict, select, project, overriding, and rename
operators [8, 5]. Flatt et al. [18, 19] develop a semantics for classes and class-like mixins
(without composition operators) in a core language, and have incorporated mixins and traits
into Scheme (now Racket) based on classes and macros. Lagorio et al. [30] modeled Jigsaw
in a class-based formalism based on Featherweight Java [26], and then Corradi et al. [11]
extended the formalism to handle family polymorphism [15]. More recently, class mixins
have been incorporated into Newspeak (alongside family polymorphism) [9] and Dart [6].

Traits were revived for multiple inheritance in Smalltalk [14]: in this design, a class can
inherit from one single superclass, and then incorporate multiple traits based with a trait
algebra comprising sum, aliasing, exclusion operators. A key property of Smalltalk traits is
that their conceptual model was based on flattening, rather than dynamic dispatch, although
both semantics have been proven equivalent [39]. Scala [41] and Java 8 [22] incorporate
traits, although relying on ‘super’ calls rather than aliasing or renaming.

A discussion of object-based inheritance systems would be incomplete without referring to
OCaml [31], which is not dissimilar to the language of our base model. Both languages have
object constructors, classes as sugar for methods returning fresh objects, symmetric multiple
inheritance, and are structurally typed. We work on the theory of traditional object-style
polymorphism rather than OCaml’s row polymorphism.

More significantly, even if OCaml classes are described as syntactic sugar, objects (or
other classes) can only inherit from classes, whereas in all of our models objects can inherit
from (at least) any manifestly fresh objects whether or not defined by classes. OCaml also
has a more complex, but in some ways less powerful, initialisation model than what we
specify here. In OCaml, field initialisers are evaluated in the enclosing lexical scope, and
initialisation code must be sequestered into initialisation blocks which are run late — neither
of which reflect a straightforward reading of program’s source code — while in our models
initialisation is always in a straight line, within the context of the object being constructed.

9 Conclusion

Object-based inheritance is unexpectedly complicated, especially when commonplace desires
for functionality available in classical models are involved, and programmers have resorted
to increasingly complex workarounds in existing object-based languages. In this paper we
showed that object inheritance without classes is both viable and desirable, avoiding the
conceptual complexity of an additional kind of entity in an object-oriented language without
losing functionality through careful feature selection, and set out a range of options with
their various trade-offs made explicit.

We presented and discussed seven models of object inheritance, including the well-known
approaches of delegation, forwarding, and concatenation. We presented a novel extended
operational semantics for a base language incorporating advanced but standard features
affected by inheritance, and formalised the models as extensions to that single base language,
formally demonstrating the subtle behavioural differences of each model. In particular,
we addressed the complex questions of downcalls, object registration, stability, inheriting
preëxisting objects, action at a distance, and multiple inheritance, and their interactions,
illustrating that object-based inheritance has the full range of possibilities of classical
inheritance, and showed that many of these models can be used as effectively as purely
declarative classes, but particular combinations — especially class initialisation semantics

ECOOP 2016



13:24 Object Inheritance Without Classes

combined with inheritance from preëxisting objects — require a specific set of features usually
reserved for very dynamic and reflective languages.

References
1 Henk Barendregt. The Lambda Calculus. North-Holland, revised edition, 1984.
2 Graham M. Birtwistle, Kristen Nygaard, Bjørn Myhrhaug, and Ole-Johan Dahl. Simula

Begin. Studentlitteratur, 1979.
3 Andrew P. Black, Eric Jul, Norman Hutchinson, and Henry M. Levy. The development of

the Emerald programming language. In History of Programming Languages III, 2007.
4 Alan Borning. Classes versus prototypes in object-oriented languages. In Proc. ACM Fall

Joint Computer Conference, pages 36–40, 1986.
5 Gilad Bracha. The Programming Language Jigsaw: Mixins, Modules, and Multiple Inher-

itance. PhD thesis, University of Utah, 1992.
6 Gilad Bracha. Mixins in Dart, 2015. [Online; accessed 30-November-2015]. URL: https:

//www.dartlang.org/articles/mixins.
7 Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA, 1990.
8 Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proc. International

Conference on Computer Languages, pages 282–290, 1992.
9 Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot

Miranda. Modules as objects in Newspeak. In ECOOP, pages 405–428, 2010.
10 Craig Chambers, David Ungar, Bay-Wei Chang, and Urs Hölzle. Parents are shared parts

of objects: inheritance and encapsulation in Self. Lisp and Symbolic Computation, 1991.
11 Andrea Corradi, Marco Servetto, and Elena Zucca. DeepFJig: modular composition of

nested classes. In PPPJ, pages 101–110, 2011.
12 Christophe Dony, Jacques Malenfant, and Pierre Cointe. Prototype-based languages: From

a new taxonomy to constructive proposals and their validation. In OOPSLA, 1992.
13 Christophe Dony, Jacques Malenfant, and Pierre Cointe. Classifying prototype-based

programming languages. In James Noble, Antero Taivalsaari, and Ivan Moore, editors,
Prototype-Based Programming: Concepts, Languages and Applications, chapter 2. 1999.

14 Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black.
Traits: A mechanism for fine-grained reuse. ACM Transactions on Programming Languages
and Systems, 2005.

15 Erik Ernst. Family polymorphism. In ECOOP, 2001.
16 Manuel Fähndrich and Songtao Xia. Establishing object invariants with delayed types. In

OOPSLA, pages 337–350, 2007.
17 Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with

PLT Redex. MIT Press, 2009.
18 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In

POPL, 1998.
19 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s reduction

semantics for classes and mixins. In Formal Syntax and Semantics of Java, 1998.
20 Joseph (Yossi) Gil and Tali Shragai. Are we ready for a safer construction environment?

In ECOOP, pages 495–519, 2009.
21 Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.

Addison-Wesley, 1983.
22 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language

Specification. Oracle, 2015.
23 Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and Andrew P. Black. Grace-

ful dialects. In ECOOP, pages 131–156, 2014.

https://www.dartlang.org/articles/mixins
https://www.dartlang.org/articles/mixins


T. Jones, M. Homer, J. Noble, and K. Bruce 13:25

24 Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy, and Eric Jul.
The Emerald programming language report. Computer Science, UBC, October 1991.

25 Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. The evolution
of Lua. In History of Programming Languages III, 2007.

26 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, 2001.

27 Carlton Egremont III. Mr. Bunny’s Big Cup o’Java. Addison-Wesley, 1999.
28 Timothy Jones and James Noble. Tinygrace: A simple, safe and structurally typed language.

In Formal Techniques for Java-like Programs. 2014.
29 Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, 1991.
30 Giovanni Lagorio, Marco Servetto, and Elena Zucca. Featherweight Jigsaw: Replacing

inheritance by composition in Java-like languages. Inf. Comput., 214:86–111, 2012.
31 Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme

Vouillon. The OCaml system release 4.00 documentation and user’s manual, 2012.
32 Henry Lieberman. Using prototypical objects to implement shared behavior in object

oriented systems. In OOPSLA, November 1986.
33 Henry Lieberman, Lynn Andrea Stein, and David Ungar. Treaty of Orlando. In Addendum

to OOPSLA Proceedings, May 1988.
34 Lua-Users. Object oriented programming, 2014. [Online; accessed 30-November-2015].

URL: http://lua-users.org/wiki/ObjectOrientedProgramming.
35 Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-Oriented

Programming in the BETA Programming Language. Addison-Wesley, 1993.
36 Donna Malayeri and Jonathan Aldrich. Cz: Multiple inheritance without diamonds. In

OOPSLA, 2009.
37 Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, 1988.
38 Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.
39 Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. Flattening traits. Journal of

Object Technology, 5:66–90, 2006.
40 James Noble, Antero Taivalsaari, and Ivan Moore, editors. Prototype-Based Programming:

Concepts, Languages, Applications. Springer-Verlag, 1997.
41 Martin Odersky, Lex Spoon, and Bill Venners. Programming In Scala. Artima, 2011.
42 Xin Qi and Andrew C. Myers. Masked types for sound object initialization. In POPL,

pages 53–65, 2009.
43 Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. The billion-dollar fix—

safe modular circular initialisation with placeholders and placeholder types. In ECOOP,
pages 205–229, 2013.

44 Pat Shaughnessy. Ruby Under A Microscope. No Starch Press, 2013.
45 Brian C. Smith. Reflection and semantics in Lisp. In Proceedings of the ACM Conference

on Principles of Programming Languages, 1984.
46 Stack Overflow. Which JavaScript library has the most comprehensive class inheritance

support?, 2015. [Online; accessed 30-November-2015]. URL: https://stackoverflow.
com/questions/711209.

47 Alex J. Summers and Peter Müller. Freedom before commitment - a lightweight type
system for object initialisation. In OOPSLA, pages 1013–1032, 2011.

48 Antero Taivalsaari. Delegation versus concatenation or cloning is inheritance too. Oops
Messenger, 6(3), 1995.

ECOOP 2016

http://lua-users.org/wiki/ObjectOrientedProgramming
https://stackoverflow.com/questions/711209
https://stackoverflow.com/questions/711209


13:26 Object Inheritance Without Classes

49 Antero Taivalsaari. Classes vs. prototypes: Some philosophical and historical observations.
In James Noble, Antero Taivalsaari, and Ivan Moore, editors, Prototype-Based Program-
ming: Concepts, Languages and Applications, chapter 1. Springer-Verlag, 1999.

50 David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Organizing programs
without classes. Lisp and Symbolic Computation, 4(3), June 1991.

51 David Ungar and Randall B. Smith. SELF: The power of simplicity. Lisp and Symbolic
Computation, 4(3), June 1991.

52 Wikipedia. Snit, 2015. [Online; accessed 30-November-2015]. URL: https://en.
wikipedia.org/w/index.php?title=OTcl&oldid=663399454.

53 Allen Wirfs-Brock, editor. ECMAScript 2015 Language Specification. Ecma International,
6th edition, 2015.

54 Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay Saraswat. Object initialization
in X10. In ECOOP, pages 207–231, 2012.

https://en.wikipedia.org/w/index.php?title=OTcl&oldid=663399454
https://en.wikipedia.org/w/index.php?title=OTcl&oldid=663399454

	Introduction
	Inheritance Without Classes
	Graceless
	Object Inheritance
	Forwarding
	Delegation
	Concatenation

	Emulating Classes
	Merged Identity
	Uniform Identity

	Multiple Inheritance
	Multiple Uniform
	Method Transformations
	Positional

	Discussion
	Related Work
	Conclusion

