
Brand Objects for Nominal Typing
Timothy Jones, Michael Homer, and James Noble

Victoria University of Wellington
New Zealand
{tim,mwh,kjx}@ecs.vuw.ac.nz

Abstract
Combinations of structural and nominal object typing in systems such as Scala, Whiteoak, and
Unity have focused on extending existing nominal, class-based systems with structural subtyping.
The typical rules of nominal typing do not lend themselves to such an extension, resulting in major
modifications. Adding object branding to an existing structural system integrates nominal and
structural typing without excessively complicating the type system. We have implemented brand
objects to explicitly type objects, using existing features of the structurally typed language Grace,
along with a static type checker which treats the brands as nominal types. We demonstrate that
the brands are useful in an existing implementation of Grace, and provide a formal model of the
extension to the language.

1998 ACM Subject Classification D.3.3 Classes and objects

Keywords and phrases brands, types, structural, nominal, Grace

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Introduction

Most statically typed object-oriented languages use nominal subtyping. From Simula [5]
and C++, through to Java, C] and Dart, an instance of one type can only be considered an
instance of another type if the subtyping relationship is declared in advance, generally at the
time the subtype is declared.

Some modern languages have adopted structural subtyping. In Go, for example, types
are declared as interfaces, and an object conforms to a type if the object declares at least the
methods required by the interface [41]. As well as Go’s interfaces, Emerald is structurally
typed [9], as is OCaml’s object system [31] and Trellis/OWL [42]. Structural types have
also been used to give types post-hoc to dynamically typed languages: Strongtalk originally
supported structural types for Smalltalk [14], and Diamondback Ruby uses structural types
for Ruby [23].

Given that nominal and structural typing both have advantages, there have been attempts
to combine them both in a single language. The Whiteoak language [24] begins with Java’s
nominal type system and adds in support for structural types. Around the same time,
Scala 2.6 [36] added structural types, again on top of a language with a nominal type system.
The Unity language design similarly adds structural types onto a nominal class hierarchy [32].

The key argument of this paper is that adding nominal types to a structural type system
requires a relatively smaller amount of effort. The corollary to this argument is that adding
structural types into a nominal language — the direction of most existing approaches to the
problem — does things backwards. This argument is based on our experience building a
branding mechanism in Grace, an object-oriented language with a standard structural type
system [6, 7]. Both the static and dynamic nature of brands have been implemented using
existing features of Grace, with minimal changes to the language.

© Timothy Jones, Michael Homer, and James Noble;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1023

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.999
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1000 Brand Objects for Nominal Typing

We validate our argument by contributing:

A practical design of brand objects for nominal typing on top of Grace’s existing structural
type system.
An implementation of brand objects and a static nominal type checker in Hopper, a
prototype implementation of Grace.
Case studies of branding for various components of the language design in Hopper.
A formal model of brands as nominal types as an extension to an existing model of a
subset of the language.

The remainder of this paper proceeds as follows: Section 2 presents our motivation and design
for branded types. Section 3 describes the implementation. Section 4 presents a series of case
studies validating the utility of our branding system in the existing implementation. Section 5
formalizes our design, and proves soundness. Section 6 discusses alternative approaches,
Section 7 discusses related work, and Section 8 concludes.

2 Brands

Nominal and structural typing both have advantages [32, 24]. Structural typing decouples an
object’s type — the set of methods to which it can respond— from the object’s implementation
(usually a class). Structural types can be declared at any time, in any part of the program,
and still be relevant to any object with the appropriate interface. Any object that conforms
to a structural type can be used wherever an instance of that structural type is required,
even though the object’s declaration did not declare that it implemented the type — among
the reasons that Go adopted structural typing [41].

Being based solely on objects’ interfaces rather than their implementations, structural
types correspond to the conceptual model of object-oriented programming where individual
objects communicate only via their interfaces, with their implementations encapsulated [19].
The clear separation between structural types and their implementing classes, and the ease of
defining types independently from classes works well with gradual and pluggable typing [13],
so programmers can begin by writing programs without types, and then add types later as
the need increases.

On the other hand, nominal subtype relationships must be designed and declared by
programmers, meaning they can capture programmers’ intentions explicitly. Nominal sub-
typing can make finer distinctions between objects than structural subtyping: a structural
system cannot distinguish between two different classes that have the same external interface,
whereas a nominal system can distinguish between every implementation of every interface.
Because nominal types can distinguish between different implementations (classes), compilers
and virtual machines can optimize object allocation and method execution for particular im-
plementations — for example, allocating machine integers and compiling arithmetic without
any method dispatch.

As most languages are nominally typed, most of the major platforms for object-oriented
languages (the Java Virtual Machine and the Common Language Runtime) are themselves
nominally typed, so interoperability with VMs and languages is assisted by nominal typing.
Pedagogically, nominal subtyping ensures every type has a name, so compilers and IDEs
(especially their error messages) can refer to types by name, making teaching and debugging
easier. Every nominal type has an explicit, unique, declaration in the program, a declaration
that describes its relationships with all its supertypes, so class and type hierarchies can
be understood in a straightforward manner. These advantages are among the reasons that
Strongtalk, for example, moved from structural to nominal typing [12, 14].

Jones, Homer, and Noble 1001

In order to implement brands, we have added brand objects to the Grace [6] programming
language, extending its existing structural typing mechanism. A brand object represents a
unique marker that can be applied to an object and subsequently detected, either statically
or dynamically; the effects of these objects are similar to the branded types in Modula-3 [35].
We argue that, in comparison to adding structural typing to an existing class-based nominal
system, adding nominal types to a structural type system requires only a very small change to
the language, and can be achieved without any changes at all in a language with a relatively
extensible type system. This is also demonstrated by the relatively simple additions of the
formal model in Section 5, and by comparisons to other formalisms of branding systems.

Most nominal object-oriented type systems use a hierarchy of classes to define their types
and name those types after the classes. Most branding systems use the same technique,
whether or not they extend existing class-based languages. In such a language, brand types
represents objects which have been created by their associated class, and conceptually include
the interface of that class as well. In contrast, our brand objects have no associated class,
and two objects branded with the same brand may have entirely distinct interfaces — we
rely entirely on the existing structural type system to provide interface information. A brand
type represents exactly those objects which have been branded by the underlying brand
object, and no more.

We use three existing features of Grace in our implementation. Object annotations, where
a newly constructed object is annotated with some other object, are used to explicitly brand
objects (object annotations are a feature of Grace not yet discussed in the literature). A
pattern [27] — which provides runtime pattern-matching facilities — acts as a brand’s type,
to test the presence of that brand on a given object. The dialect system [26] then allows the
creation of a pluggable static type system which reasons about the patterns of brands bound
to statically observable names as nominal types, and treats branded objects as inhabitants
of these types.

2.1 Creating, Applying, and Using Brands
Consider a class hierarchy representing shapes, defining the concrete classes square and circle.
In a strictly nominal system, an abstract class shape would form the root of this hierarchy,
and create a common supertype for all concrete shape objects. In Grace, we might first
define a Shape type:1

let Shape = type {
at → Point
area → Number

}

The Shape type describes the expected structure of a shape object. We could then define a
class hierarchy which implements this interface, annotating the shape class as abstract with
the keyword is:

class shape.at(location : Point) → Shape is abstract {
method at → Point { location }

}

1 Grace names returning types conventionally start in uppercase (Shape) while names returning objects
(which may be fields, methods, or classes) start in lowercase (shape).

ECOOP’15

1002 Brand Objects for Nominal Typing

With concrete classes:

class square.at(location : Point) withLength(length : Number) → Shape {
inherits shape.at(location)
method area → Number { ... }

}

class circle.at(location : Point) withRadius(radius : Number) → Shape {
inherits shape.at(location) ...
method area → Number { ... }

}

Note that the classes are tagged with return types, as Grace classes are distinct from types.
Moreover, all of these classes have the same return type, because their instances all have the
same interface.

We could explicitly declare types for the objects created by the square and circle classes,
by listing the signatures of the public methods in each class:

let Square = type { at → Point; area → Number }
let Circle = type { at → Point; area → Number }

These new types are identical to the Shape type defined above, and represent exactly the
same set of objects. Structural types cannot distinguish between different objects with the
same interface, either during static checking or at runtime.

In this paper, we introduce brand objects that can be used to make finer distinctions
between objects — distinctions that correspond to standard nominal types. Brand objects
are created by the brand method, which returns a new unique brand object. For example:

let aSquare = brand

will create a new brand object named aSquare. We can use this brand object to mark objects
(e.g. those created by the square class) by annotating the class declaration with the brand:

class square.at(location : Point)
withLength(length : Number) → Shape is aSquare { ... }

Brand objects have a Type method that returns a Grace pattern object that reifies the
type of the brand. This lets us define distinct Square and Circle types by combining the
structural Shape type with the types of the respective brands via Grace’s type intersection
operator (&).

let Square = Shape & aSquare.Type

let aCircle = brand
let Circle = Shape & aCircle.Type

Brands combined with structural interfaces produce Grace types that behave like nominal
types. Square and Circle now define different types, rather than aliases of the same structural
type.

This lets us go one step further: we can now declare that the square class returns an
object of the Square type:

class square.at(location : Point)
withLength(length : Number) → Square is aSquare { ... }

Jones, Homer, and Noble 1003

The instance’s structural type is the same as before, but it carries the added information
that it is branded as aSquare, making it an instance of the Square branded type as well. The
brand aSquare is not a type, annotating the class with the brand is different from providing
a return type, hence the appearance of both the aSquare brand and the Square type.

The combination of branded types with structural types follows the same type rules as
other types, including subtyping. A branded object (with the appropriate brand) must be
supplied where a branded object is expected:

def mySquare : Square = square.at(10 @ 50) withLength(20)

A branded object may be used anywhere an unbranded object with the same structure is
expected:

def myShape : Shape = mySquare

But critically, an unbranded object cannot be supplied where a branded object is expected:

// Error: not an instance of Square
def myCircle : Square = circle.at(10 @ 50) withRadius(20)

If these declarations were repeated in another module (or even in the same module) then
the repetition will create a different unique identifier and so represent a distinguishable, that
is, different, brand and associated pattern object, regardless of the name the brand is bound
to. The nominal aspect of the brand is its underlying object identity.

Brand objects, like types, can be reasoned about statically. For clarity on what we are
treating statically in this paper we write “let” for all statically-known declarations, as a
syntactic extension to the language. We discuss this change, which is not specific to branding,
further in Section 3.

2.2 Extending Brands
Inheriting from an object that is branded causes the resulting object to have the same
brand: this behavior is necessary for inheritance to preserve subtyping (required by the Grace
specification [8]). Inheritance is the easiest mechanism for extending an existing brand, and
provides a correspondence between class and (nominal) type, as in most nominally typed
languages.

If we were to return to the shape class, and create a brand for it:

let aShape = brand
let Shape = aShape.Type & type { ... }
class shape.at(location : Point) → Shape is abstract, aShape { ... }

Now the whole shape hierarchy is branded, and the Shape type will only match objects
created by the shape class, including those which inherit from it. The Square and Circle types
remain subtypes of Shape and the square and circle classes inherit the aShape brand, just as
if the classes were in a standard nominal typing hierarchy.

Brands need not conform to single-inheritance class hierarchies. Because brands are
not inherently associated with an interface, and access to the brand object is all that is
required to build an object which satisfies the brand type, any object can take advantage of
multiple-subtyping without a multiple-inheritance mechanism by simply being branded with
multiple brands. This is conceptually similar to a class implementing multiple interfaces in
Java or C], providing a typing relationship without method reuse.

ECOOP’15

1004 Brand Objects for Nominal Typing

Brand objects also support the + operator, which creates a ‘sub-brand’ from two existing
brands. Using this new brand is exactly the same as using the two parts together: branding
an object with it causes the object to be branded with both the parts, and the brand’s Type
is the intersection of the patterns of both of the parts. Combining a brand with a new,
anonymous brand, creates a unique sub-brand of the extended one. This behavior is included
in the brand interface as the extend method.

2.3 Brands vs. Branded Types
The distinction between a brand (like aSquare) and a branded type (aSquare.Type, or Square)
is crucial. Branded objects can only be created with access to the underlying brand. An
untrusted object can safely be given access to the branded type, as this does not allow that
object to fraudulently brand other objects. This can be achieved by exposing the branded
type to other code as a public constant and keeping the brand object locally as a confidential
field not accessible from the outside.

In Grace, a declared brand, like any other named declaration, is a method in an object;
the name of a type (branded or not) is simply a request to the object declaring the type,
and so Grace’s existing visibility mechanism suffices to protect brands. In order to ensure
no other class can be branded aSquare while allowing public access to the Square type, we
would modify the brand declaration to be hidden:

let aSquare is confidential = brand

These declarations are public by default, so the type remains exported.
Access only flows in one direction: the brand object cannot be retrieved from the type,

but access in the other direction is not limited, as the pattern object is available through
the brand object with the Type method. The pattern object does not provide any privileged
behavior, so it makes sense to provide uni-directional access between the objects rather than
returning a pair from the brand constructor.

The three branding utilities — the brand method, the use of brands as annotations on
object literals and classes, and the unique types they introduce — are the only additions
Grace’s structural type system requires in order to support nominal types. Moreover, using
Grace’s patterns and dialects, they are all achieved using existing functionality, with no
brand-specific modifications to the language’s syntax or semantics. In the next section, we
discuss how this is achieved.

3 Implementation

We have implemented brands in Grace on top of Hopper, an existing prototype interpreter
for the language. The core implementation is a single Grace module, extending the existing
structural type checker described in [26]. We have also modified the language implementation
to change type declarations to let, permitting any statically resolvable value to appear in
the declaration.

All of the functionality specific to brands is implemented using existing features of Grace,
provided in a dialect [26] with the necessary definitions. Every Grace module is written in
a dialect that defines the methods that are in the local scope throughout that module. A
dialect may also provide a check method, which is passed the AST of any module which
uses it and may subsequently raise errors about the implementation of the module. The
check method allows for a form of pluggable typing [13], which individual modules may opt
in to. Modules written in the brand dialect will be checked, and the dynamic behavior of the

Jones, Homer, and Noble 1005

brands will work as expected in other modules, but the static checking is restricted to just
those modules using the branding dialect.

Annotations are an existing feature of Grace, allowing objects to be attached to — and
potentially transform — various language constructs, including singleton object constructors
and classes. Hopper allows arbitrary expressions to appear in an annotation list, requiring
only that the resulting object have an appropriate method for handling the construct that
it annotates: for example, object annotations must have an annotateObject method. The
method is implemented on brands so that it attaches the brand to the object’s metadata,
which is a weak set of objects associated with another object at runtime available through
reflection. The metadata on a construct can be retrieved through a mirror object using the
existing reflection interface. This means an object can be tested for a brand with:

mirrors.reflect(obj).metadata.has(aThing)

Grace’s Pattern type, which provides an interface for testing objects against type-like
objects as runtime [27], is used to build brand pattern objects. By inheriting from a standard
abstract class that defines the basic implementation of patterns, the objects need only provide
a concrete match method, which uses the reflection system mentioned above to inspect the
metadata of the given object and discover whether the relevant brand is in the metadata set.

Internally, most of the brand object functionality is implemented in the preBrand class.
This class is used to build the ‘pre-brand’ object aBrand. This pre-brand is local to the
dialect, but the dialect makes the public type Brand for use outside of the dialect, which is
aBrand’s pattern object combined with the interface of brands.

let Brand = aBrand.Type & ObjectAnnotation & type {
Type → Pattern
extend → Brand
+(other : Brand) → Brand

}

aBrand has the same implementation as other brands, but an object cannot appear in its
own annotation list and so aBrand does not satisfy the Brand type. All other brands inherit
from the same class that created aBrand, with the sole addition of being branded by aBrand,
causing them to satisfy the Brand type.

method brand → Brand {
object is aBrand { inherits preBrand.new }

}

These two definitions are included with the rest of the standard dialect definitions to provide
a sensible set of default methods to any module which uses the dialect.

The dialect extends the existing structural type checker by including extra understanding
of the Brand type and the result of requesting brand in its check method. Each creation
of a brand object is considered distinct by the system, and this identity is tracked within
the scope of its creation, as well as when it is exported by a let declaration. The existing
structural rules are still enforced, including when structural types are paired with brand
types. We formalize this combination of static typing in Section 5.

The replacement of type declarations with let is necessary to allow any dialect which
is introducing a new type construct (rather than refining an existing one) to know what it
should be reasoning about statically. This change is not specific to brands. The existing type
declarations require that the value being declared be a statically-determinable structural type:

ECOOP’15

1006 Brand Objects for Nominal Typing

neither brands nor their pattern objects satisfy this definition, and neither will any other new
value which a particular dialect treats as a static type. The definition of ‘statically-known’
is now determined on a module-by-module basis by the dialect a module is implemented
in. The default and structural type checking dialects use the existing definition of static
structural types, whereas the brand dialect extends this definition to include the new static
brand values.

Matching against a brand’s object identity provides no dynamic information about a
brand’s name, so that if a dynamic type error occurs involving a brand it cannot report
the name of the brand that failed to match. Reporting type names is a standard problem
in structural type systems [32] as types do not naturally have names. The use of static
declarations in Grace also addresses this problem, by dynamically attaching name information
to values — both brands and brand types, in our case — defined by a let declaration, which
can be leveraged to generate better error messages. This behavior was already implemented
for structural type declarations.

4 Case studies

Even in a structurally-typed language, some aspects will require more nominal semantics. This
section presents applications of branding, mostly within the existing language implementation,
replacing ad-hoc implementations with the branding mechanism.

4.1 Abstract Syntax Tree
An AST may contain many nodes with the same structure, but which must nevertheless be
distinguished. This is a particularly important problem for Grace, as dialect check methods
operate over the AST of the modules that they check. Nodes for a variable declaration and a
constant definition will have a name, a value, and a type, but it is important that neither be
mistaken for the other when they must be considered distinct. While the subtyping structure
of an AST node is likely to be ‘flat’, brands allow overlaying distinguishing features on a
range of otherwise-identical types.

We draw out two cases in particular from the AST of Grace source code, reflecting issues
we have had ourselves in implementing the language. The var and def (variable and constant
declaration) nodes mentioned in the previous paragraph have the same fundamental shape,
while a class node has a superset of the methods of an object node, but is not a subtype of
it. Before brands, AST nodes were ‘stringly-typed’, using a kind string field with the name
of the node type, but this was an ad-hoc solution that sat outside of the type system. We
can combine brands and types to avoid both of these issues: each kind of node now has both
a structural interface and one or more nominal brands. Once we have created the relevant
brands, the types can be constructed as:

// The common interface of both var and def nodes
let DeclNode = Node & type {

name → String
value → Expression
pattern → Expression

}

let VarNode = aVarNode.Type & DeclNode
let DefNode = aDefNode.Type & DeclNode

Jones, Homer, and Noble 1007

The DeclNode type is purely structural, and before brands was the only type that applied to
each of our nodes. VarNode, however, combines the structural type with the pattern of the
aVarNode brand: to belong to the VarNode type, an object must have both the structural
type and be branded as aVarNode.

class varNode.new(...) → VarNode is aVarNode { ... }

match(varNode.new(...))
case { d : DefNode → print "A def!" }
case { v : VarNode → print "A var!" }

Prior to brands, just as in our shapes example from earlier, the VarNode statement would
‘fall into’ the DefNode branch [11], because it is the first to appear and the structural type
would match, and similarly a def node could be passed to a method expecting a var node
without error. With brands, the DefNode branch does not match and the correct branch is
given an opportunity to match, while both static and dynamic type checks will behave as
desired.

4.2 Dialects
Dialects can be defined by expressing the checking as a series of rule blocks [26]. Rule blocks
specify which nodes they apply to by typing their input, but this presents a problem to the
type checker: if the input is stringly-typed, the type checker cannot determine what the type
means and so cannot check the body of the rule. Misuses such as the spelling error below will
not be caught until runtime, despite the rule being annotated with what appear to be types.

rule { vn : VarNode →
if (vn.vallue.isEmpty) then {

CheckerFailure.raise("All vars must be assigned to") forNode(vn)
}

}

The extended reasoning of the branding allows the type checker to understand the combination
of structural and nominal type.

A similar issue can occur when one type is a structural supertype of another. This
situation arises in the case of class and object nodes, and the same resolution can be applied:

let ObjectNode = anObjectNode.Type & type {
body → List<Node>

}

let ClassNode = aClassNode.Type & type {
body → List<Node>
name → String

}

class classNode.new(...) → ClassNode is aClassNode { ... }

Objects created by classNode will not be considered to belong to the ObjectNode type,
notwithstanding that they possess all of the methods of object nodes. Before brands these
nodes were distinguished by string fields found in all nodes, outside of the type system. Using

ECOOP’15

1008 Brand Objects for Nominal Typing

fields in this way is clearly suboptimal, particularly as it sits outside the protection of the
type system.

4.3 Exceptions
Representations of runtime errors encode a degree of hierarchy, and must be both created
and caught within this hierarchy. For example, a FileNotFoundError may be a specialization
of IOError, which is itself a RuntimeError. An exception handler must be able to declare it
wishes to trap all IOErrors, including specializations. In a nominal language such as Java this
behavior maps naturally onto nominal class inheritance, with a handler for one exception
type implicitly trapping all its subtypes by subsumption. In a structurally-typed language
this relationship does not exist innately and must be created.

Grace’s explicit exception hierarchy leverages the pattern-matching system for handlers.
An exception kind is an object representing a kind of exception, and includes two methods.
The refine method creates a new exception kind as a child of the receiver. The raise method
creates an exception object, which is propagated up the stack until a handler is reached. All
exception kind objects are patterns, matching any exception packet derived from itself or its
refined descendants.

def FileNotFoundError = IOError.refine("File not found")
try {

if (!exists(path)) then {
FileNotFoundError.raise("{path} does not exist")

}
} catch { e : IOError →

print "An IO error occurred: {e}"
}

The catch block above will trap the exception raised in the try block because the exception
kind FileNotFound was refined from IOError.

This system is reminiscent of brands and can be placed on firmer footing through their
use. An ExceptionKind’s match method delegates to the Type object of a brand, and its raise
method creates an appropriately-branded exception packet. Omitting implementation details,
the structure of the exception kind hierarchy can look like the following:

class exceptionKind.name(name : String) brand(aKind : Brand) → ExceptionKind {
. . .

method refine(name : String) → ExceptionKind {
exceptionKind.name(name) brand(aKind.extend)

}
method raise(message : String) → None {

internal.raise(object is aKind { inherits exception })
}
method match(obj : Object) → MatchResult {

aKind.Type.match(obj)
}

}

let Exception = exceptionKind.name("Exception") brand(brand)

Jones, Homer, and Noble 1009

In this way brands provide a well-founded structure for an existing sui generis construct
of the language. An exceptional behavior has been replaced with a consistent general-purpose
approach that can be applied in user code elsewhere.

4.4 Singleton types
A singleton type is a type with only a single element, which may or may not be trivial.
Singleton types are one way of adding nominal types into a structural language,2 but we
find it more advantageous to go in the other direction: to use brands as the means to add
singleton types to a language without them. If a sentinel value unit is defined as an empty
object, then its structural type is type {}, which is inhabited by every object. If Unit is to
be a proper unit type, with unit as its only inhabitant, then we can define:

let theUnit is confidential = brand
let Unit = theUnit.Type

def unit is public = object is theUnit {}

As theUnit is not publicly available, other modules cannot brand other objects with it, and
so unit will always be the only inhabitant proper of Unit.

Similarly, the empty type can also be constructed by taking the pattern of an anonymous
brand, ensuring that no object can ever be branded by it and, by extension, ever be an
instance of the resulting type.

let None = brand.Type

A brand need not be bound to a name to take its Type.

5 Formal Model

In this section, we model branded types by extending Tinygrace, an existing formal model of
a subset of the Grace language [29]. A Tinygrace program is a set of type declarations and an
expression to be evaluated. Unlike the gradual type system of the full Grace language, type
information is always required: Tinygrace types are mandatory, and there is no Unknown
(dynamic) type. Our extension makes two simple additions: branding objects with the
is annotation marker, and creating brands with the brand declaration, as in the Grace
implementation.

Brand declarations have no associated name or structural type information, but their
associated types may be combined with structural information using the combinator &,
and must be bound to a name or combined with other brands in order to be useful. In
the following figures, changes to the existing model not related to structural typing are
highlighted .

5.1 Syntax
The abstract syntax for the model is defined in Figure 1. The metavariable T ranges
over static expression declarations; M over methods; O over object literals; C over case

2 We discuss this approach in Section 6.

ECOOP’15

1010 Brand Objects for Nominal Typing

expressions; x and y over variable names; X and Y over static expression alias names; τ over
type expressions; S over method signatures, m over method names, and e over expressions.

We write e to indicate a possibly empty sequence of comma-separated expressions
e1, . . . , en, as well as for method signature parameters x : τ and type names X, hiding
the parentheses and is keywords when there are no values for them to delimit. We also
write S, T , and M to indicate a possibly empty set of declarations S1 . . . Sn, T1 . . . Tn, and
M1 . . .Mn respectively, and case {x : τ → e } (or just C) to indicate a non-empty sequence
of case branches. As a Grace module is just an object, but the model does not allow static
declarations in object bodies, a program is any pair of the form T e. We follow Tinygrace in
using Barendregt’s variable convention [4, 44] that bound and free variables are distinct.

The set of type declarations T allows type aliasing as well as a mechanism for expressing
recursive types without explicit folding. The declarations are resolved to explicitly recursive
µ-types and substituted throughout the program to remove all aliases at runtime. µ-types
are not a part of the concrete syntax, and can only arise from the normalization of type
declarations.

Syntax

P ::= T e (Program)

M ::= method S { e } (Method)

O ::= object is B {M } (Object constructor)

C ::= match(e) case {x : τ → e } (Match-Case branch)

τ ::= type {S } | µX.τ | X | (τ | τ) | (τ & τ) | B.Type (Type)

S ::= m(x : τ) → τ (Method signature)

e ::= x | e.m(e) | O | C (Expression)

B ::= brand | B + B | X | β (Brand expression)

E ::= τ | B (Static expression)

T ::= let X = E (Static declaration)

Contexts

Σ ::= · | Σ, X <: Y (Subtyping context)

Γ ::= · | Γ, x : τ (Typing context)

Auxiliary Definitions

or(τ) = τ

or(τ, τ) = τ | or(τ)

and(τ) = τ

and(τ, τ) = τ & and(τ)

Figure 1 Grammar for Tinygrace with branding extension

Jones, Homer, and Noble 1011

The major syntactic addition is the brand expression, with the metavariable B. The
concrete syntax includes the brand constructor, sums of brands, and references to static
brand declarations. Individual brands are resolved to a unique value in the set of names β.
Like µ-types, β names are not part of the concrete syntax, arising only from the resolution
of brand constructors. Ultimately, the names that brands are bound to become irrelevant,
and they are identified solely by the uniqueness of their β name.

The remaining additions involve usage of brands: annotated objects and references to
a brand’s Type. The new metavariable E ranges over both brand expressions and types,
allowing static declarations to refer to either.

5.2 Well-Formedness and Normalization of Declarations

The normalization judgments for programs, static declarations, and methods are given in
Figure 2. A program Te is normalized into a single expression e′ by Te . e′ before it is analyzed
or reduced. This normalization procedure corresponds to the well-formedness judgments of
Tinygrace, making explicit how type declarations are transformed into anonymous recursive
types inside the program expression.

Brand declarations B are normalized by T ` B . B′, removing all occurrences of
the brand constructor and replacing them with unique β identifiers to produce B′. Brand

T e . e

(N-Prog)

T ` T . E′

T e . [X 7→ E′]e
T = let X = E, with X distinct

T ` let X = E . E′

(N-Type-Decl)

T ` τ X

T ` let X = τ . µX.τ

µX.τ contractive

(N-Brand-Decl)

T ` B . B′

T ` let X = B . B′

T ` B . B′

(N-Brand)

T ` brand . β

β fresh

(N-Name)

T ` X . X

let X = B ∈ T

(N-Plus)

T ` B1 . B′1 T ` B2 . B′2

T ` B1 +B2 . B′1 +B′2

Figure 2 Declaration normalization

ECOOP’15

1012 Brand Objects for Nominal Typing

normalization also ensures well-formedness, as names in brand declarations must refer to an
existing brand declarations in order to normalize. Note that normalization only transforms
named declarations of brands, and other appearances of brand that appear in types or in
the program expression are not resolved to some β. These ‘dangling’ brands can persist
throughout the type-checking and execution of a program, but are considered distinct by
subtyping and so cannot have any adverse effect on any of the remaining judgments.

Each type declaration must not resolve to itself (let X = X), and its interpretation as a
tree must be contractive.

I Definition 1. A type tree is contractive if it corresponds to a finite series of µ-types or
applications of & or |, so that all paths traversing any of those three operations terminates
in a type literal.

For a type µX.τ , this means that X may not appear in τ — either directly or through a
reference to some other, mutually recursive declaration in T — except inside the body of a
structural type literal. In the concrete syntax, this extends the set of invalid types to include
declarations such as let X = X & Y , or let X = Y ; let Y = X.

Programs normalize to some expression e′ when their set of declarations (both types and
brands) normalize, and e′ is the result of substituting the normalized declarations into the
expression, with e′ well-typed.

Type and method well-formedness are defined in Figure 3. Type well-formedness, T ` τ X,
ensures that names inside τ only refer to existing type declarations. References to a brand’s
Type normalizes the brand, but discards the result, as only the well-formedness of the brand

T ` τ X

(W-Struct)

T ` τp X T ` τr X

T ` type {m(x : τp)→ τr } X

m distinct

(W-Name)

T ` X X

let X = τ ∈ T

(W-And)

T ` τ1 X T ` τ2 X

T ` τ1 & τ2 X

(W-Or)

T ` τ1 X T ` τ2 X

T ` τ1 | τ2 X

(W-Rec)

T , let X = τ ` τ X

T ` µX.τ X

(W-Brand)

T ` B . B′

T ` B.Type X

Γ `M X

(W-Meth)

Γ, x : τp ` er : τr

Γ ` method m(x : τp)→ τr { er } X

Figure 3 Type and method well-formedness

Jones, Homer, and Noble 1013

is required for the type to be well-formed. Dangling brands in Type references are retained,
causing the whole type to be empty.

The well-formed judgment for methods Γ `M X just defers to the type judgment of the
body of M in the scope of the method parameters.

5.3 Subtyping
The rules for type and signature subtyping are given in Figure 4, and are mostly standard.
The subtyping relation is written Σ ` τ1 <: τ2, meaning a type τ1 is a subtype of type τ2 in
the context of the assumption set Σ. The primary subtyping rule is Rule S-Struct, which
states that two structural types type {S1 } and type {S2 } are in the subtyping relationship
if, for a signature S2, there is a signature S1 with matching parameter types and return type
in contravariant and covariant relationships respectively, and the subtraction of the matching
signature from each type are also subtypes in the same direction. This forms an algorithmic
approach to structural subtyping, removing a signature one at a time before terminating at
Rule S-Top.

The assumption set models the otherwise coinductive nature of the recursive subtyping in
a well-founded inductive setting. When comparing two recursive types with Rule S-Unfold
the types may be unfolded but a subtyping relationship between the names bound by µ is
added to the assumption set. If the same relationship is compared again, it succeeds through
Rule S-Assum, modeling the infinite repetition permitted by coinduction. The assumption
set need only contain the names of the types, as the well-formedness rules ensure that bound
type names are unique to the type: if µX.τ appears in the program, any appearance of µX.τ ′
is guaranteed to have τ ′ = τ . Because the rules are interpreted inductively, the transitivity
expressed in Rule S-Trans does not cause the judgment to degenerate.

The partial unfolding Rules S-Unfold-Left and S-Unfold-Right do not add to
the assumption set, but the contractivity rules from the well-formedness rules ensure that
the unfolded variable does not appear except inside of a type literal. This means that
Rule S-Struct must apply in between, advancing the judgment.

The union and intersection types follow standard subtyping rules. The rules for subtyping
of & are not complete with respect to the full language, as type {S1 } & type {S2 } is not
equivalent to the union of S1 and S2 (an operation that requires combining signatures with
the same name). This incompleteness does not affect the subset we are modeling.

The branding extension adds three rules to the subtyping judgment. Types of equivalent
β names are subtypes, providing reflexivity for brands, and the patterns of sums of brands
just defer to the intersection of the patterns of the summed brands. These rules only affect
the relevant proofs by adding these extra cases into inductive reasoning.

The instance judgment O ∈ τ , defined in Figure 5, means that a concrete object O is
in the type τ . The judgment is defined directly in terms of subtyping on the concrete type
of O, which the branded addition extends to include all of the brand patterns with the &
combinator (the and auxiliary function is defined in Figure 1). We can interpret a type τ as
a set [[τ]] containing all of the concrete objects that are instances of that type, {O | O ∈ τ}.
We prove soundness of subtyping with respect to these set semantics.

First we require an inversion lemma on the instance judgment.

I Lemma 2. If object is B {method S { e } } ∈ τ , then · ` and(type { S }, B.Type) <: τ

Proof. Trivial inversion of O ∈ τ by Rule S-In. J

We can now show soundness of subtyping, with respect to the set semantics of the types.

ECOOP’15

1014 Brand Objects for Nominal Typing

Σ ` τ1 <: τ2

(S-Struct)

Σ ` τp2 <: τp1 Σ ` τr1 <: τr2 Σ ` type {S1 }<: type {S2 }

Σ ` type {m(x1 : τp1)→ τr1 S1 }<: type {m(x2 : τp2)→ τr2 S2 }

(S-Top)

Σ ` τ <: type {}

(S-Assum)

Σ ` µX.τ1 <: µY.τ2
X <: Y ∈ Σ

(S-Unfold)

Σ, X <: Y ` [X 7→ µX.τ1]τ1 <: [Y 7→ µY.τ2]τ2

Σ ` µX.τ1 <: µY.τ2
X <: Y /∈ Σ

(S-Unfold-Left)

Σ ` [X 7→ µX.τ]τ <: type {S }

Σ ` µX.τ <: type {S }

(S-Unfold-Right)

Σ ` type {S }<: [X 7→ µX.τ]τ

Σ ` type {S }<: µX.τ

(S-Or-Left)

Σ ` τ <: τ1

Σ ` τ <: τ1 | τ2

(S-Or-Right)

Σ ` τ <: τ2

Σ ` τ <: τ1 | τ2

(S-Or)

Σ ` τ1 <: τ Σ ` τ2 <: τ

Σ ` τ1 | τ2 <: τ

(S-And)

Σ ` τ <: τ1 Σ ` τ <: τ2

Σ ` τ <: τ1 & τ2

(S-And-Left)

Σ ` τ1 <: τ

Σ ` τ1 & τ2 <: τ

(S-And-Right)

Σ ` τ2 <: τ

Σ ` τ1 & τ2 <: τ

(S-Trans)

Σ ` τ1 <: τ2 Σ ` τ2 <: τ3

Σ ` τ1 <: τ3

(S-Brand-Refl)

Σ ` β.Type<: β.Type

(S-Brand-Left)

Σ ` B1.Type &B2.Type<: τ

Σ ` (B1 +B2).Type<: τ

(S-Brand-Right)

Σ ` τ <:B1.Type &B2.Type

Σ ` τ <: (B1 +B2).Type

Figure 4 Subtyping judgment

Jones, Homer, and Noble 1015

I Theorem 3. If · ` τ1 <: τ2, then [[τ1]] ⊆ [[τ2]].

Proof. Take any O such that O ∈ [[τ1]]. For the exact type τo of O, · ` τo <: τ1 by Lemma 2.
As · ` τ1 <: τ2, · ` τo <: τ2 by the transitivity of subtyping, so O ∈ τ2 by Rule S-In. J

This property is not particularly interesting, as the instance rule is defined directly in terms
of subtyping and so these outcomes are relatively obvious. We are more interested in the
property of method inclusion, which ensures that when an expression is typed through the
subtyping property, the resulting concrete object will have the necessary methods indicated
by the type of the expression — this property is necessary for a structural subtyping system
to be sound, and a proof for progress of well-typed terms under reduction relies on it. As
not all types are structural, we consider any set of signatures in a structural supertype
(equivalent to using a subsumption rule, which will be defined later).

I Theorem 4. If · ` τ <: type { S1 }, then for any object {method S2 { e } } ∈ [[τ]], every
S1 ∈ S1 has a corresponding method S2 ∈ S2 such that · ` S2 <: S1.

Proof. By induction over the derivation of · ` τ <: type { S }. All of the rules which do
not permit a structural type literal on the right of the subtyping judgment are irrelevant,
and cannot become relevant in the derivation (because none of the relevant rules apply
subtyping with a different type on the right side), so the derivation must ultimately terminate
at Rule S-Top, by removing all of the signatures in the structural supertype after finding
compatible signatures in the subtype through applications of Rule S-Struct. With case
analysis on the last step, Rule S-Top is trivial, and the remaining relevant rules follow
directly from the induction hypothesis. J

5.4 Semantics
The rules for the reduction relation 7−→ are given in Figure 6. The relation is written e 7−→ e′,
meaning that the expression e reduces to e′ in a single reduction step. We write 7−→∗ for the
reflexive and transitive closure of 7−→. Object constructors are the only normal form of any
expression. The judgment e 7−→∗ O represents a successful execution.

The rules for typing of terms is given in Figure 7. The typing judgment for expressions
has the form Γ ` e : τ , meaning that in the variable environment Γ, e has the type τ . The
branding extension only modifies one rule that, like the instance judgment extension, folds
the & combinator over a branded object’s structural type and its declared brands’ Types.
We prove the soundness of the system through standard progress and preservation [22, 34],
beginning with progress:

I Theorem 5. If · ` e : τ , then e 7−→ e′ or e is a term of the form O.

O ∈ τ

(S-In)

· ` and(type {S }, B.Type) <: τ

object is B {method S { e } } ∈ τ

Figure 5 Instance judgment

ECOOP’15

1016 Brand Objects for Nominal Typing

Proof. By induction on the derivation of · ` e : τ , with a case analysis on the last step.
Rule T-Var is irrelevant, as Γ = ·. Rule T-Sub and Rules T-Req and T-Case for
congruence follow from the induction hypothesis. Rule T-Req for computation ensures that
an appropriate method with appropriate parameter cardinality exists (guaranteed through
subsumption with Theorem 4), and Rule T-Case for computation ensures that either there
is more than one case or, when there is one case, the object is guaranteed to match that final
case. The added branding rule in Rule T-Obj is as trivial as the existing object rule, as a
branded object is still a value and so is still in normal form. J

Next we require substitution preservation.

I Lemma 6. If Γ, x : τ ′ ` e : τ and Γ ` O : τ ′, then Γ ` [x 7→ O]e : τ .

Proof. By induction on the derivation of Γ, x : τ ′ ` e : τ . The cases are straightforward ex-
aminations of substitution. Branding only affects objects, which may have brand annotations,
but this is not affected by substitution. J

The following lemma takes the observation that, for the subtyping relationship · ` τ1<:or(τ2),
at least one of the types in τ2 must also be a supertype of τ1, and places it in the context of
preservation for Rule R-Miss, where subtracting a type from the series of unions preserves
the union as a supertype of τ1 if the subtracted type was not a supertype of τ1.

I Lemma 7. If · ` τ1 <: τ2 | τ3 and · 6` τ1 <: τ2, then · ` τ1 <: τ3.

e 7−→ e′

(R-Recv)

e 7−→ e′

es.m(ep) 7−→ e′.m(ep)

(R-Prm)

e 7−→ e′

Os.m(Op, e, ep) 7−→ Os.m(Op, e′, ep)

(R-Req)

method m(x : τp)→ τr { er } ∈M

object is B {M }.m(Op) 7−→ [self 7→ object is B {M }, x 7→ Op]er

|x| =
∣∣Op

∣∣
(R-Match)

e 7−→ e′

match(e) case {x : τ → ec } 7−→ match(e′) case {x : τ → ec }

(R-Case)

match(O) case {x : τ → ec } · · · 7−→ [x 7→ O]ec
O ∈ τ

(R-Miss)

match(O) case {x : τ → ec } C 7−→ match(O) C
O /∈ τ

Figure 6 Small-step semantics of reduction

Jones, Homer, and Noble 1017

Γ ` e : τ

(T-Var)

Γ ` x : τ
x : τ ∈ Γ

(T-Sub)

Γ ` e : τ1 · ` τ1 <: τ2

Γ ` e : τ2

(T-Obj)

· ` type {S } X Γ, self : and(type {S }, B.Type) ` method S { e } X

Γ ` object is B {method S { e } } : and(type {S }, B.Type)

(T-Req)

Γ ` es : type {S } m(x : τp)→ τr ∈ S Γ ` ep : τp

Γ ` es.m(ep) : τr
|x| = |ep|

(T-Case)

Γ ` e : or(τp) Γ, x : τp ` ec : τc

Γ ` match(e) case {x : τp → ec } : or(τc)

Figure 7 Term typing judgment

Proof. By induction on the derivation of · ` τ1 <: τ2 | τ3. Rule S-Or-Left cannot apply,
and the remaining rules must ultimately delegate to Rule S-Or-Right to be well-founded.
Branding just adds a case for Rule S-Brand-Left. J

Now we have the tools for a proof of preservation:

I Theorem 8. If · ` e : τ and e 7−→ e′, then · ` e′ : τ ′ where · ` τ ′ <: τ .

Proof. By induction on the derivation of e 7−→ e′. The congruence rules follow straightfor-
ward induction, and the computation rules are derived from the two previous lemmas, using
Lemma 6 for Rules R-Req and R-Case, and Lemma 7 for Rule R-Miss. Branding has a
minimal impact on both reduction and typing of terms, and so does not pose a problem
here. J

And finally we have type soundness.

I Theorem 9. If the expression e is well-typed with · ` e : τ , and the reduction e 7−→∗ e′
results in e′ a normal form, then e′ is in the form O where · ` O : τ ′ with · ` τ ′ <: τ .

Proof. Type soundness follows immediately from the two previous theorems. J

6 Discussion

In order to demonstrate the relative simplicity of our branding additions, we compare our
formal model to formalizations of the other branding systems Unity [32], and the Tagging
Language [25]. Objective measures of the complexity of type systems are difficult, but we
can produce a simple comparison on the number of formal rules that are not significant
to branding, alongside the rules that are. The outcome is the table in Figure 8. We omit

ECOOP’15

1018 Brand Objects for Nominal Typing

Tinygrace Unity Tagging

Syntax 7 + 4 9 + 5 5 + 5

Well-formedness 8 + 5 4 + 2 3 + 2

Subtyping 13 + 3 13 + 3 2 + 2

Term typing 5 + 1 9 + 2 6 + 4

Reduction 7 + 0 14 + 4 3 + 4

Total 40 + 13 49 + 16 19 + 17

Figure 8 Comparison of rule modifications required by branding

Whiteoak [24] because it does not provide a formal model, but the Whiteoak design has
almost as many additions to the syntax as Tinygrace makes overall. Both Tinygrace and
the branded extension have a relatively large well-formedness overhead, but they have the
same number of subtyping rules as Unity, and brands make a substantially smaller impact
on typing and reduction in Tinygrace than in either Unity or even the significantly smaller
Tagging Language (which lacks objects, fields, classes, and dynamic dispatch). The larger
number of well-formedness rules in Tinygrace seems to stem from making less assumptions in
the translation from type (and brand) declarations to recursive type (and brand) expressions.

Another option to support nominal types in any structural system by the addition of
unique method names into the type, and empty implementations of these methods into the
objects which are expected to fulfill this type. While the ‘phantom method’ approach works
in theory, it is difficult to implement in a way that preserves the necessary encapsulation
goals of nominal typing. If the methods are provided manually, the developer must provide
method names that will not be used anywhere else in the program, and the encapsulation
is trivially bypassed by adding the appropriate methods to other, external objects. If the
methods are produced automatically, then either the branding mechanism cannot be private,
or the automatic names must be indexed by something (presumably the module in which
the branding appears), in which case brands cannot be shared because no other module
may perform the same branding. A unique singleton or empty type as the return type of
a common ‘branding’ method in a type is another approach, but it suffers from the same
problem in that the brand and type cannot be exposed separately. Neither mechanism can
simultaneously service both public construction and private implementation. Our brands, in
contrast, provide a fine-grained mechanism for providing access to the branding mechanism
components.

Branding provides a partial solution to Boyland’s gradual guarantee in gradually typed
code [11], as testing an object against a brand pattern at runtime is always definitive, and is
not affected by type annotations. As an extension, branding is not pervasive among objects,
and so using brand patterns is only applicable to objects which have been explicitly branded.
Removing reified types from the language (another proposed solution) while retaining the
existing object instance rules would remove the consistency of brand patterns (as both static
entities and runtime objects) alongside structural types.

Compared to standard nominal class declarations, the branding mechanism is necessarily
verbose, requiring a manual separation of the brand from its type (mirroring the separation
between classes and structural types in Grace). This verbosity is mostly a product of the fact
that brands have been implemented without modifying the language syntax or semantics,
but it also serves a purpose in demonstrating that it is not the natural mechanism for typing

Jones, Homer, and Noble 1019

in Grace: structural typing is sufficient for most purposes, and it is only special cases (as
seen in Section 4) where the manual separation of brand and pattern that branding should
apply. It is conceivable that a more terse mechanism for direct class/type declarations could
exist:

class Shape.new is nominal { ... }

Adding nominal classes directly defies Grace’s design goal of maintaining a separation of
type and implementation, however [6].

7 Related Work

The dichotomy between structural and nominal subtyping has been studied from the earliest
applications of types to object-oriented languages [10]. Simula, the first object-oriented
language, is nominally typed: a subclass must be explicitly declared as inheriting (being
prefixed) by its superclass [5]. Most object-oriented languages (C++, Java, C], etc) followed
Simula’s lead, although OCaml [31] supports structural subtyping for objects, as does Go [41].

Most early theoretical analysis of type systems for object-oriented languages used struc-
tural types [20, 17, 15, 40]. Later references such as Palsberg and Schwartzbach [38],
Bruce [16], and Pierce [39] discuss structural and nominal (sub)typing, but they do not
address the question of how both kinds of types can best be integrated into a single, practical,
language design.

Our notion of nominal brands on structural types originated in Modula-3 [35]. Record
types in Modula-3 generally use structural equivalence, but can be annotated with a brand
to give nominal equivalence. Modula-3 brands can also be given explicitly, e.g. for type safety
between programs or across networks. Even with structural equivalence, Modula-3 record
types do not support subtyping: there is no type relationship between a record type with a
particular set of fields, and a second record type with a subset (or superset) of those fields
— only between two record types whose field types are identical. Modula-3’s object types
are “essentially SIMULA classes” [18] and, like SIMULA, use nominal subtyping. Neither
Cardelli et al.’s formalization of the Modula-3 type rules [18], nor Abadi’s Baby Modula-3, [1],
nor the Theory of Objects [2] model Modula-3’s branded types: rather, the formal model we
present here is the first we know of that shows how Modula-3–inspired brands can allow a
language to support both structural and nominal subtyping.

Malayeri and Aldrich’s Unity language [32, 33] is a more recent clean-sheet language
design that aims to support both nominal and structural typing. Unity also uses brands
to support nominal typing, but brands in Unity are essentially nominal classes — unlike
Modula-3 or Grace brands, which are annotations on structural types and objects respectively.
Unity’s brands define the core object hierarchy in a Unity program, potentially extending a
superbrand and defining fields and methods in the exactly same way that in, say, Java classes
potentially extend a superclass and define the fields and methods of their instances. Unity
objects are created by instantiating a brand, again just as Java (or SIMULA) objects are
created by instantiating a class. Brands give Unity a nominal core, to which structural types
are then added, in contrast to the approach presented here, which adds nominal brands on top
of structural types. Unity draws on structural types to support external multimethods and
fields defined outside objects. While Grace does not not support multimethods, similar effects
can often by obtained by pattern matching, which Grace supports using both structural and
nominal types. Unity was modeled formally, but not implemented.

Glew’s Tagging Language [25] introduces ‘tags’, which are conceptually very similar to

ECOOP’15

1020 Brand Objects for Nominal Typing

our brand objects, in the context of type dispatch. Tags can be used to implement class-
and exception-casing in much the same way as brands. The underlying type system is not
structural, and is populated by primitive sequence and function types instead. The language
formalism goes into depth on the existence of tags at runtime, including populating the heap
and runtime matching.

Gil and Maman’s Whiteoak [24] in many ways takes a more pragmatic approach than
Unity to combining structural and nominal types. Where Unity is a clean-sheet design,
Whiteoak adds structural types to Java. Whiteoak uses the ‘struct’ keyword (reserved in
Java) to define structural types, in practice very similar to Java interfaces except that struct’s
subtyping is, of course, structural. Whiteoak also has some features for post-hoc object
extension, and a form of trait composition. Unlike Unity, Whiteoak has been implemented,
and a type checking algorithm is described, although the type system has not been formalized.

Beginning in Scala 2.6, Scala supports structural types as refinements of the top type
AnyRef [36]. Structural types may appear wherever Scala types are expected, and generally
may take part in Scala’s rich and multifaceted type system. The formalizations of Scala’s
type systems, νObj [37], FSalg [21], and µDOT [3] are nominal, and do not incorporate
structural types (Scala’s “refinements”). Philosophically, Scala, Whiteoak, and Unity share a
single approach: adding structural types to an existing nominal system. Our approach is the
opposite.

Brands and structural typing have also been used in more practical languages. Trel-
lis/OWL was based on structural types [42] although without brands. Strongtalk [14] is an
optional (AKA pluggable) type system for Smalltalk: in the original version of Strongtalk,
the types were structural with optional brands, again very similar to our design, although a
later version of Stongtalk abandoned brands and adopted declared subtyping and matching
relationships [12]. Diamondback Ruby adopted a type system very similar to Strongtalk’s to
type check Ruby programs [23]. Diamondback Ruby does not use brands, although it employs
both nominal types generated from classes, and structural types to describe individual objects.
Many other efforts to add types to dynamic languages, such as Typed Scheme/Racket, provide
a set of type combinators such as intersection or union which allow the build up of more
complicated type aliases [43]. Typed Racket in particular takes advantage of the language’s
underlying extensibility to include the type system as a library, rather than in the language.

Trademarks have been proposed for ECMAScript 6 [28], which provide a very similar
model of branding for the language. Trademarks are also split between a branding object
and a ‘guard’, the latter of which is conceptually a type, with the same mechanism of
hiding the branding object while exposing the guard to prevent fraudulent branding. As
a dynamically-typed language, combining static reasoning about trademarks with a static
structural type system would be useful.

The implementation of brand objects, with the brand type accessible through a method
on the brand itself, is reminiscent of the path dependent types in µDOT [3]. Following a
chain of statically-known values is required in order to resolve the type statically, and is part
of the requirement for the let construct. µDOT focuses more on strictly defined associated
types, whereas Grace currently does not allow type literals to include other type declarations
inside of themselves.

Recent work includes the Tagged Objects of Lee et al. in Wyvern, which adds nominal tags
on top of an existing structural type system [30]. This approach focuses on the type theory
of tags, and provides new primitive type and matching constructs as an extension to the
language, with new static typing rules. This differs from our branding, which introduces the
nominal types through existing language features including dialects and runtime reflection.

Jones, Homer, and Noble 1021

8 Conclusion

In this paper, we have described how we added nominal types (via brand objects) as a
minimal extension to Grace’s structural type system. We have demonstrated this extension
on top of the existing implementation Hopper, drawing on Grace’s pattern matching and
dialects. We have provided several case studies of brands in the existing implementation,
and have modeled the new type system and proved it sound. The key advantage of our
approach is that brands are a much smaller addition to a preexisting structural type system
than structural types are to a preexisting nominal type system, and required only a minimal
change to the underlying language. So, if you are going to design a language that combines
nominal and structural typing, our strong advice is to follow Modula-3: start with a structural
system and then add nominal types, rather than to follow Unity, Whiteoak and Scala, which
start with a nominal system and then add what amounts to another entire (structural) type
system alongside.

References
1 Martin Abadi. Baby Modula-3 and a theory of objects. Journal of Functional Programming,

4(2):249–283, 1994.
2 Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, New York, 1996.
3 Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. In

OOPSLA, 2014.
4 Henk Barendregt. The Lambda Calculus. North-Holland, revised edition, 1984.
5 G. M. Birtwistle, O. J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Studentlitter-

atur, 1979.
6 Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble. Grace: the absence of

(inessential) difficulty. In Onward!, pages 85–98, 2012.
7 Andrew P. Black, Kim B. Bruce, Michael Homer, James Noble, Amy Ruskin, and Richard

Yannow. Seeking Grace: a new object-oriented language for novices. In SIGCSE, pages
129–134, 2013.

8 Andrew P. Black, Kim B. Bruce, and James Noble. The Grace programming language (draft
specification version 0.3.1303). http://gracelang.org/documents/grace-spec031303.
pdf, 2013.

9 Andrew P. Black, Eric Jul, Norman Hutchinson, and Henry M. Levy. The development
of the Emerald programming language. In History of Programming Languages III. ACM
Press, 2007.

10 Andrew P. Black and Jens Palsberg. Foundations of object-oriented languages — workshop
report. SIGPLAN Notices, 29(3):3–11, 1994.

11 John Tang Boyland. The problem of structural type tests in a gradual-typed language. In
FOOL, New York, NY, USA, 2014. ACM.

12 Gilad Bracha. The Strongtalk type system for Smalltalk. In OOPSLA Workshop on Ex-
tending the Smalltalk Language, 1996.

13 Gilad Bracha. Pluggable Type Systems. OOPSLA workshop on revival of dynamic lan-
guages, 2004.

14 Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a production
environment. In OOPSLA, 1993.

15 Kim B. Bruce. A paradigmatic object-oriented programming language: design, static typing
and semantics. Journal of Functional Programming, 4(2):127–206, 1994.

16 Kim B. Bruce. Foundations of Object-Oriented Languages: Types and Semantics. MIT
Press, 2002.

ECOOP’15

http://gracelang.org/documents/grace-spec031303.pdf
http://gracelang.org/documents/grace-spec031303.pdf

1022 Brand Objects for Nominal Typing

17 L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
Computing Surveys, 17(4):471–522, 1985.

18 Luca Cardelli, James E. Donahue, Mick J. Jordan, Bill Kalsow, and Greg Nelson. The
Modula-3 type system. In POPL, pages 202–212, 1989.

19 William R. Cook. On understanding data abstraction, revisited. In OOPSLA, 2009.
20 William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In

Proc. 17th ACM Symp. on Principles of Programming Languages, pages 125–135, 1990.
21 Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky. A core calculus

for Scala type checking. In MFCS, pages 1–23, 2006.
22 Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North-Holland, 1958.
23 M. Furr, J.-H. An, J. Foster, and M.J. Hicks. Static type inference for Ruby. In SAC, pages

1859–1866, 2009.
24 Joseph Gil and Itay Maman. Whiteoak: Introducing structural typing into Java. In

OOPSLA, 2008.
25 Neal Glew. Type dispatch for named hierarchical types. In ICFP, New York, NY, USA,

1999. ACM.
26 Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and Andrew P. Black. Grace-

ful dialects. In ECOOP, pages 131–156, 2014.
27 Michael Homer, James Noble, Kim B. Bruce, Andrew P. Black, and David J. Pearce.

Patterns as objects in Grace. In DLS, New York, NY, USA, 2012. ACM.
28 Waldemar Horwat and Mark Miller. ES6 Strawman: Trademarks. http://wiki.

ecmascript.org/doku.php?id=strawman:trademarks, 2011.
29 Timothy Jones and James Noble. Tinygrace: A simple, safe and structurally typed language.

In FTFJP. ACM, New York, NY, USA, 2014.
30 Joseph Lee, Jonathan Aldrich, Troy Shaw, and Alex Potanin. A theory of tagged objects.

In ECOOP, 2015.
31 Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme

Vouillon. The OCaml system release 3.12 documentation and user’s manual, 2011.
32 Donna Malayeri and Jonathan Aldrich. Integrating nominal and structural subtyping. In

ECOOP, 2008.
33 Donna Malayeri and Jonathan Aldrich. Is structural subtyping useful? An empirical study.

In ESOP, 2009.
34 John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. TOPLAS,

10(3), 1988.
35 Greg Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, 1991.
36 Martin Odersky. The Scala Language Specification: Version 2.9. Programming Methods

Laboratory, EPFL, Switzerland, 2011.
37 Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal theory

of objects with dependent types. In ECOOP, pages 201–224, 2003.
38 Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems. John Wiley &

Sons, Chichester, 1994.
39 Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
40 Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-

oriented programming. Journal of Functional Programming, 4:207–247, 1994.
41 Rob Pike and The Go Team. The Go programming language specification. http://golang.

org/ref/spec, 2014.
42 Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An intro-

duction to Trellis/OWL. In OOPSLA, 1986.
43 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed

Scheme. In POPL, 2008.

http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
http://wiki.ecmascript.org/doku.php?id=strawman:trademarks
http://golang.org/ref/spec
http://golang.org/ref/spec

Jones, Homer, and Noble 1023

44 Christian Urban, Stefan Berghofer, and Michael Norrish. Barendregt’s variable convention
in rule inductions. In CADE, pages 35–50, 2007.

ECOOP’15

	Introduction
	Brands
	Creating, Applying, and Using Brands
	Extending Brands
	Brands vs. Branded Types

	Implementation
	Case studies
	Abstract Syntax Tree
	Dialects
	Exceptions
	Singleton types

	Formal Model
	Syntax
	Well-Formedness and Normalization of Declarations
	Subtyping
	Semantics

	Discussion
	Related Work
	Conclusion

