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ABSTRACT
Grace is a gradually typed, object-oriented language for use
in education. Grace needs a module system for several rea-
sons: to teach students about modular program design, to
organise large programs, especially its self-hosted implemen-
tation, and to provide access to resources defined in other
languages. Grace uses its basic organising construct, ob-
jects, to provide modules, and is then able to use its gradual
structural typing to obtain a number of interesting features
without any additional mechanisms.

1. INTRODUCTION
In object-oriented languages, objects and the classes that

generate them are the primary unit of reuse. But objects
and classes are typically too small a unit for software main-
tenance and distribution. Many languages therefore include
some kind of package or module construct, which provides a
namespace for the components that it contains, and a unit
from which independently-written software components can
obtain the components they wish to use.

1.1 The Grace Programming Language
We are engaged in the design of Grace, a new object-

oriented programming language aimed at instructors and
students in introductory programming courses [4]. Two prin-
ciples have helped us to keep Grace small and easy to learn:

P1. omit from the Grace language itself anything that can
be defined in a library; and

P2. design Grace around a small number of powerful mech-
anisms, each of which can be used to provide the effect
of what might otherwise be several special-purpose fea-
tures.

Principle P1 implies the need for some kind of module
facility, so the libraries can be defined in Grace and so
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that student programs can use those libraries. Principle P2
prompted us to try to build a module facility out of the
more primitive concepts already included in Grace. We be-
lieve that we have succeeded, and present here as evidence a
description of Grace’s modules, showing how they are built
from more basic language features yet permit powerful mod-
ular functionality.

1.2 What is a Module?
As an educational language, Grace does not need as elab-

orate a module system as might be required in an industrial-
strength language. Grace does need a module system ade-
quate to support the development of its own tools, which
already include a self-hosting compiler, and will, we hope,
eventually include a programming environment. We want
the module system to support the different applications of
modules that students may need to learn, and so arrived
at a set of requirements an idealised module system should
meet.

The specific requirements for Grace’s module system are
as follows:

R1. Separate compilation: each module can be compiled
separately.

R2. Foreign implementation: it should be possible to view
packages implemented in other languages through the
façade of a Grace module; the client code should not
need to know that the implementation is foreign.

R3. Namespaces: each module should create its own names-
pace, so maintainers of a module need not be concerned
with name clashes.

R4. Sharing: clients should be able to share the objects pro-
vided by a module.

R5. Type-independent: because Grace is gradually typed,
the module system cannot depend on the type system,
but the module system should support programmers
who wish to use types.

R6. Controlled export: some mechanism should be available
to hide the internal details of a module’s implementa-
tion.

R7. Multiple implementations: it should be possible to re-
place one module by another that provides a similar
interface, while making minimal changes to the client.



R8. Explicit dependencies: code that uses a module depends
on that module: these dependencies should be explicit
so that a reader may follow the dependency chain and
flow of execution.

Grace meets these requirements by representing modules
as objects. Combining these module objects with Grace’s
gradual structural typing provides a wide range of function-
ality. This approach to the design of module systems has
been influenced by Python and Newspeak.

1.3 Contributions
The contributions of this paper are:

• the design of a module system in which modules are
objects with optional gradual structural typing (Sec-
tion 3); and

• the rationale that led us to this design (Section 4);

To help the reader understand our design, the next section
summarises the features of Grace’s object system that relate
to modules.

2. OBJECTS IN GRACE
Grace is an imperative object-oriented language with block

structure, single dispatch, and many familiar features [4].
Grace aims to be suitable for teaching introductory pro-
gramming courses, to look familiar to instructors who know
other object-oriented languages, and to give instructors and
text-book authors the freedom to choose their own teaching
sequence. In Grace it is possible to start using types from
the beginning, or to introduce them later, or not at all. It is
also possible to start with objects, or with classes, or with
functions. Most importantly, instructors can move from one
approach to another while staying within the same language.

A Grace object is created by executing an object construc-
tor expression; each time the object constructor is executed,
it creates a new object:
def fido = object {

def name = "Fido"
var age := 2
method say(phrase : String ) {

print "{name} says: {phrase}"
}
print "{name} was born."

}
fido . say("Hello")

Teaching curricula using Grace may start with objects
or with classes. In Grace’s conceptual model, objects are
primary, and own their own methods. Classes are “factory”
objects that create “instance” objects.

Objects can contain methods and fields. A constant is
declared with def and defined with =, while a variable uses
var and is assigned (and re-assigned) with :=. The object
fido has a constant field name and a variable field age, and a
method called say whose parameter has type String. Grace
uses “curly bracket” syntax and the form obj. m to request
that object obj execute its method m — an action that we
call method request. To prevent a method being accessed
from outside the object, the programmer may annotate it
with is confidential.

When an object is constructed, any inline code in the
definition is executed. Strings can include expressions en-
closed in braces: the expression is evaluated, converted to a
String, and inserted in place of the brace expression. Thus,

the above program prints “Fido was born.” and then “Fido
says: Hello”.

Grace’s class construct abbreviates the definition of an
object with a single method that contains an object con-
structor, and thus plays the role of a factory method:
class dog.named(n : String) {

def name = n
var age := 0
method say(phrase : String ) {

print "{name} says: {phrase}"
}
print "{name} was born."

}
def fido = dog.named "Fido"

The above class is a factory for constructing objects with
the same structure and effects as the object constructor ear-
lier. The class definition creates an object called “dog”, with
a factory method called “named”. Instantiating a class is
requesting a method on an object.

Classes are completely separate from types: the class dog

is not a type and does not implicitly declare a type. The
programmer may specify types if desired:
type Speaker {

say( : String ) −> Done
}
def fido : Speaker = dog.named "Fido"

The type Done indicates that a method does not return a
useful result.

Types are gradual and structural. They are gradual be-
cause if no types are specified, code is dynamically typed,
but when statically- and dynamically-typed code are com-
bined, automatic runtime type checks preserve safety. Types
are structural because an object has a type exactly if it re-
sponds to all of the methods of the type, with the correct
argument and result types; it is not necessary for the object
to have been “branded” with that type when it was created.
All of our definitions of fido result in an object belonging
to the type Speaker. Along with methods, types may be
included as components of objects. Types have a runtime
representation as a pattern [10] object.

3. MODULES AS OBJECTS
A Grace module is a piece of code that constructs an ob-

ject, and the object then constructed. This module object
behaves like any other object; in particular, it may have
types and methods as attributes, and can have state. A
module corresponds to a source file: the module object is
created as if the entire file were inside an object {...} con-
structor. Alternative implementations may allow other rep-
resentations of a module’s source code. Here is a complete,
if simple, module:
def person = "reader"
method greet(name) {

print "Hello, {name}!"
}
greet (person)

Executing this module will print “Hello, reader!” and con-
struct a module object with the greet method in it. That
module object has normal Grace object semantics, and so
may contain many methods, objects, classes, fields, and
types, or none. The effect of this is similar to modules in
Python [16] (discussed in Section 7.1, but uses existing lan-
guage features instead of adding a new concept that must
be explained and has its own idiosyncratic behaviours.



Modules as objects provide a consistent story for inter-
active read-eval-print loops as well as scripts: programmers
define an object progressively as they write. As we shall
see, making modules objects, rather than introducing a new
feature, interacts constructively with other aspects of the
language, such as gradual typing.

3.1 Importing modules
To access another module, the programmer uses an import

statement:
import "examples/greeter" as doorman

The string that follows the import keyword must be a lit-
eral; it identifies the module to be imported. From the
perspective of the language this string is opaque; the cur-
rent implementation treats it as a relative file path. The
identifier following as is a local name that is bound to the
module object created by executing that file. If we assume
that "examples/greeter" refers to the simple module shown
above, then a name doorman is introduced in the local scope,
bound to an object with a greet method.

To take advantage of static type checking, a variant of the
import statement allows the programmer to specify the type
that the imported module should meet:
import "examples/greeter" as doorman : BasicGreeter

Types in Grace specify an interface, not an implementation,
so this asserts that the imported module object must satisfy
the interface defined by the BasicGreeter type; if it does not,
an error occurs (at compile-time or bind-time, depending
on the implementation). The type could be imported from
another module, or be defined by the client:
type BasicGreeter = {

greet (n : String ) −> Done
}

import "examples/greeter" as doorman : BasicGreeter

An alternative implementation of the same type may be cho-
sen by changing the import path string. When no type is
specified in the import statement, the type of the module is
inferred from its implementation. A Grace implementation
should save enough information about a module to avoid
the need to process the source code again each time it is
imported.

3.2 Gradual typing of modules
Through careful use of modules, imports, and type speci-

fications, a system can be configured in a range of different
ways covering many of the common purposes of modules.

• We can import a module with its original types, whatever
those may be, using import "x" as x. Parameters and re-
turn values with dynamic types in "x" will also be dynamic
in the importing module, while uses of statically-typed pa-
rameters and return values will be statically checked in the
importing module.

• We can ignore any type information specified in the mod-
ule "x" using import "x" as x : Dynamic. This means that
providing an argument to a method of x that does not
match the declared type of a parameter, or requesting a
method that is not defined, will not be reported as static
errors, and will not prevent the importing code from be-
ing compiled and run. Grace’s gradual typing means that
such errors will be caught dynamically, if and when the
offending code is executed. This is very useful when pro-

gramming intentionally, coding test-first, and when writ-
ing client code to explore what the interface of "x" should
be.

• We can define the interface that we want a module to sup-
port separately, that is, in another module. This allows
for multiple implementations of the same interface; it can
also be used to check that a module provides the features
that we expect:
import "xSpec" as xSpec
import "xImpl" as x : xSpec.T

Here, "xSpec" is a module defining the type T, like a
Modula-2 definition module [25]. The type of the imple-
mentation module "xImpl" is required to conform to the
type xSpec.T. A different implementation of xSpec.T can
be selected by changing just the second import statement.

• A module that is intended to satisfy a type defined else-
where can assert its own compliance with that type. Sup-
pose that you are writing a module that you intend to
satisfy the type T defined in "xSpec". Then you could
write:
import "xSpec" as spec
assertType<spec.T>(self)

Using the library method assertType<T>(o) causes the com-
piler to statically check that o has type T, so this code
asserts that the current module object has the type T im-
ported from spec.

• We can perform “type ascription”:
type ExpectedType = { ... }
import "x" as x : ExpectedType

Here we import a module, but are explicit about the type
that our code assumes that module will satisfy — which
will often be a supertype of the type of the object actu-
ally supplied by "x". Future changes to the module "x"

that invalidate that assumption will yield an error at the
import site; this puts the “blame” in the right place. Type
ascription also imposes the constraint x : ExpectedType on
code that uses x in the importing module. So, if our im-
porting code tries to use x in a way that conflicts with that
constraint, it will receive a static error. This is true even if
the implementation module "x" uses dynamic typing; we
may develop a module gradually starting from dynamic
code and either moving to static or not, while using a
consistent target interface in client code.

In a given program, a module is executed only once. Every
import of the same path within a program will access the
same module object.

3.3 Recursive modules
A module A cannot import a module that directly or tran-

sitively imports A. This restriction is a deliberate choice.
For our target audience — novice programmers — we believe
that cyclic or recursive imports are most likely to indicate a
program structuring problem. This choice also means that
we can fully create and initialise all imported modules be-
fore the importing module. This avoids problems caused
by partially-initialised modules, which novices are likely to
have difficulty understanding.

While cyclic imports are prohibited, modules may recur-
sively use one another, just like any other pair of objects.
This can be accomplished by the programmer explicitly pro-



viding one of the modules with a reference to the other as
an ordinary method parameter.

4. DESIGN RATIONALE
In Section 1.2, we laid out the requirements for modules in

Grace. Grace objects already satisfy many of these require-
ments. Top-level objects cannot capture variables, so they
can be compiled separately (requirement R1); they create a
namespace accessible through “dot” notation (R3); the same
object may be referred to by many other objects (R4); they
are gradually typed (R5); they provide controlled export to
clients (R6); and object use is explicit (R8). Through care-
ful design of the import mechanism and our existing gradual
structural typing we were able to achieve the ability to use
foreign implementations (R2), and to substitute one imple-
mentation for another (R7). Using objects as modules avoids
introducing another concept into the language, supporting
the design principle of building a small language (P2).

We considered an alternative design in which modules
were classes, as they are in Newspeak [5]. Using classes
would offer some advantages: modules would be instantiable
and could be parameterised over objects and types. In the
style of Newspeak, we could have omitted the import con-
struct in favour of providing the module with an explicit
platform parameter containing its dependencies. We even-
tually rejected this approach because we wished to make
dependencies as explicit as possible in the code using them,
because we wanted to avoid formulaic incantations, and be-
cause Grace is primarily based on objects (with classes de-
rived from objects), rather than on classes (instantiating
objects), as is Newspeak.

In our design, a module that will be imported by other
code, a top-level“script”program consisting of statements to
execute, and code destined for an interactive read-eval-print
loop all have the same interpretation of gradually building
an object. A class-based module system could not support
this consistency. Another difficulty with using classes as
modules is that multiple imports of the same module (say,
by two different client modules) could obtain different in-
stances. The actual dependencies between the client mod-
ules would therefore need to be constructed dynamically, so
these dependencies would not be clear in the source. Ex-
plaining these nuances to novices would be complicated.

We also considered a variant of the current design in which
a file containing a single top-level declaration of an object,
type, or class was a module, while a file with multiple dec-
larations was an object with the attributes thus declared.
We rejected this option because of the extra complexity, the
lack of uniformity, and the need for special-case behaviour,
all of which would need to be explained to students.

5. IMPLEMENTATION
Modules are implemented in minigrace, a compiler for Grace.

The minigrace compiler is itself written in Grace and compiles
Grace source code into C, for native execution, and into
JavaScript, to run in a web browser. The native compiler
is intended to run on any POSIX-compatible system with
GCC, including Linux, Cygwin, and Mac OS X, although
it is most robust under Linux. The compiler is distributed
as Grace source code through git1, and as tarballs of pre-

1Available from https://github.com/mwh/minigrace. The

generated C code2 that should compile on any suitable sys-
tem. The JavaScript version of the compiler can be accessed
without any installation using a public web frontend that
runs entirely in the client3. The JavaScript version of min-

igrace has limited support for the features described in this
paper because it does not support editing multiple modules
at once, but it is possible to define and use multiple mod-
ules sequentially. The recommended way to obtain minigrace

for casual use, or for experimenting with modules, is from a
tarball.

The minigrace compiler supports multiple modules with
separate compilation, accessed through the import "module

/path" as localName syntax described in Section 3. The com-
piler interprets the quoted import strings as file system paths
rooted in the same location as the importing module, or in
a distinguished directory provided with minigrace itself. The
compiler also supports the foreign objects extension from
Section 6.1 by default on both target platforms, and the im-
port hooks used to implement external data (described in
Section 6.2) by a compiler flag.

6. EXTENSIONS AND FUTURE WORK
The module system design that we have presented is open

to a number of extensions. In particular, it is possible to
interpret the import string in various ways, without affect-
ing the rest of the language. Moreover, because a module
presents itself as an object, its internal implementation and
behaviour are hidden. In this section we present some pre-
liminary experiments and discuss future extensions that ex-
ploit these features.

6.1 Foreign objects
We can access code written in other languages, or behav-

ing in unusual ways, by compiling it appropriately and then
importing it in the ordinary way. Objects that have been
imported from a source outside the universe of Grace code
are called “foreign objects”. From the perspective of client
code, there is no difference between an import that returns
a foreign object and an import that returns an ordinary
module object. Internally, a foreign object may construct
new objects or classes “on the fly” to represent the resources
it provides, and it may access other libraries available on
the implementation platform. Because these foreign objects
present themselves as ordinary objects to Grace code, all of
the ordinary facilities of objects and modules are available
for use with them: a foreign (perhaps optimised) module
may be substituted for a Grace implementation used with
a type specification (as described in Section 3.2) in exactly
the same way that another Grace implementation could be
so substituted.

We have written a fairly complete Grace binding to the
GTK+ widget library [8] that demonstrates foreign objects.
A Grace program can use this module as follows.
import "gtk" as gtk
def window = gtk.window(gtk.GTK WINDOW TOPLEVEL)

suggested way to bootstrap minigrace is to run the
tools/tarball-bootstrap script that can be found in the
source repository and follow the instructions it gives to use
one of the C tarballs to build the compiler for the first time.
2Available from http://ecs.vuw.ac.nz/˜mwh/minigrace/dist/.
Executing the commands ./configure && make should be
sufficient to build a minigrace executable.
3Available at http://ecs.vuw.ac.nz/˜mwh/minigrace/js.

https://github.com/mwh/minigrace
http://ecs.vuw.ac.nz/~mwh/minigrace/dist/
http://ecs.vuw.ac.nz/~mwh/minigrace/js


def button = gtk.button
button. label := "Hello, world!"
button.on "clicked" do { gtk.main quit }
window.show all
gtk. main

This code creates a window with a “Hello, world!” button
that terminates the program, using a Grace transliteration
of the underlying GTK+ interfaces. GTK+ is an object-
oriented library, and its object features are mapped directly
to Grace objects. Here, notwithstanding that the "gtk" mod-
ule is not Grace, to the client code this is an ordinary module
import. Because object implementations are always opaque
the module object is indistinguishable from one defined in
Grace code. The prototype compiler (see Section 5) un-
derstands how to find and load a module including these
bindings, along with any metadata needed for compilation.

Because these foreign objects appear as ordinary Grace
objects, all of the gradual typing functionality discussed in
Section 3.2 will work unchanged. While the actual imple-
mentation is unknown, the public interface of the object is
subject to the same strictures as for any other object. In
the case where the interface of the foreign module or other
objects returned from its methods is unknown or subject to
addition at runtime, the gradual enforcement can be based
on the information currently available.

6.2 External Data
Because the source of an import is a string whose inter-

pretation is left to the implementation, we can give certain
strings special interpretations. In particular, we can inter-
pret some strings as references to external data sources like
web services, databases, and local metadata, to be reified as
foreign objects. The overall effect is similar to F#’s “type
providers” [18]. These foreign objects can be implemented
either dynamically (as in the GTK bindings) or by code gen-
eration, as in F#. Our prototype implementation (described
in section 5) supports both approaches by providing a gen-
eral hook in the import system. For example, one prototype
reifies the filesystem as a set of foreign objects. We can then
import an external file as a Grace string object:
import "file://readme.txt" as helpText

This kind of foreign import is very useful, e.g., for provid-
ing access to compile-time data such as help text, images,
and sound files. As for other potentially-foreign objects,
gradual types can enforce that we do get what we expected
when using an external data source. The source itself can
provide types for us to use dynamically. The idea behind
this feature was uncovered serendipitously as we developed
the import facility for objects-as-modules. This shows the
power of a simple mechanism used consistently. We hope
to extend our prototypes to support a wider range of exter-
nal data sources and investigate dynamically-provided types
further in the future.

7. RELATED WORK

7.1 Classes and Objects as Modules
Python [16] supports modules with separate compilation,

which become objects at run time. All top-level definitions
in a source file are attributes of the module object. Python’s
import statement includes the qualified name of the module
as a sequence of dot-separated identifiers, which are mapped
onto a filesystem path: import x. y. z resolves to a file z.py

inside the directory x/y. The source file is loaded at runtime
and the resulting singleton object bound to the imported
name. This is the only way that a Python object can be
created without a class. The import statement may include
an optional as clause providing a name to bind, exactly as
in our system.

When the qualified name of a module includes multiple
levels, as above, each intermediate layer is itself a module.
The module x is defined in x/ init .py. When a module’s
qualified name includes a dot all modules along the chain
are imported from left to right, and the leftmost component
of the name is by default bound in the local scope so that
the same qualified name used to import the module can
be used to access it. To make that name available, each
intermediate module has a new field added referring to the
next in the chain: after import x. y. z x has a y field, and x. y

a z, and these changes are globally visible. This mutation
is necessary for the design to work, and possible because
Python objects are by default mutable. Our objects are not
mutable in this way, and we did not want this complication
in Grace. Because multiple imports of the same module give
the same object in Python (as in Grace), these mutations
also obscure the actual dependencies of client code. As in
Grace, the module object may be passed as a parameter
and assigned, and otherwise treated as any other object,
but a Python module is not an instance of a more general
construct in the language in the way that ours are instances
of object constructors. As Python is dynamically typed,
there is no type information present, and Python does not
enforce encapsulation other than by metaprogramming.

Bracha et al. [5] describe modules as classes in Newspeak.
In this language a module definition is a top-level class,
whose instances are termed“modules”. Classes can be nested,
and the code in a class can access external state in three
ways: lexically, from an outer scope; from an argument pro-
vided at instantiation-time, or from a superclass. A module
definition has no lexically-surrounding class and so must be
passed all modules it will use, encapsulated in a “platform”
object, or obtain them through inheritance. Dependencies
are not defined statically in the module source; instead, the
dependencies of a module can depend on instantiation-time
arguments, so a module may be provided a different im-
plementation of a dependency in different programs. Every
module can have multiple instances and can be inherited
from. In Grace we did not want to depend on a “platform”
object: setting up or even passing along such an object is an-
other point of complexity for novice programmers that will
seem to be a magic incantation, while the actual dependen-
cies of a module are implicit and may change depending on
what is provided from the outside in the platform object. In
contrast, Grace’s practice of binding modules using import

statements makes clear both which modules are being used,
and how they are named.

Ungar and Smith [22] describe how the Self language can
support modular behaviour by prototype-based object in-
heritance. Self does not include a distinguished “module”
concept; rather, everything is an object and some objects
may be used as modules. Like other objects, these module
objects must be accessed by sending a message to another
object or creating them locally. Any object may both inherit
and be inherited from, and inheritance of environment ob-
jects subsumes the role of lexical scope, allowing an object
to present a customised picture of the world to code defined



inside itself. The Self system as a whole works in terms of
“worlds”: whole ecosystems of living objects. To move (or
copy) objects between these worlds, a “transporter” [21] is
used, and this transporter does have a concept of a module,
which it uses to produce the correct behaviour. The pro-
grammer annotates individual slots (fields or methods) with
the module they belong to, and potentially with instructions
for how each should be treated. An entire module, spanning
many living objects, may then be moved to another world to
be used there. We did not wish to commit to a world-based
approach, but did want to have a concept of modules that
did not encompass every object.

In AmbientTalk [7, 1] modules are written as explicit ob-
jects and loaded by asking a “namespace object” for them,
which maps directly onto the filesystem according to a con-
figuration set up earlier. Module import implicitly creates
delegation methods when required, allowing modules to be
imported into any object in the system. AmbientTalk’s ap-
proach contrasts with ours in writing module objects explic-
itly, and in permitting imports to happen anywhere. We
chose to ensure that all dependencies were clearly visible by
permitting them only at the beginning of a module.

Kang and Ryu [11] formally describe a proposed mod-
ule system for JavaScript. JavaScript itself does not have
any support for modules, but they are often simulated by
objects or functions in the global scope, which can lead to
naming conflicts. Kang and Ryu’s module system extends
the language with an explicit module declaration, creating
a new namespace and binding a reference to it, which may
be traversed to obtain explicitly-exported properties defined
in the module. They show that their system safely isolates
private state, but allows both nesting and mutual recur-
sion. The view of a module presented to the outside is an
object, although the implementation of the “module” dec-
laration desugars to multiple objects and closures to give
effect to encapsulation rules. The semantics of modules are
much more complicated than in our system, largely because
of JavaScript’s idiosyncratic scoping and visibility rules.

7.2 Packages
In contrast to the above languages, in which modules are

first-class and have a run-time existence, we now look at
some designs that provide what we call “packages”: grouping
of components that are less than first-class or which do not
exist at runtime at all, unlike in Grace.

Modules in Modular Smalltalk mange the visibility and
accessibility of names [23]. Modules are not objects and do
not exist at runtime. Instead they define a set of bindings
between names and objects. They can be used to group
collaborating classes, and provide a local namespace for their
own code to refer to while making only the module itself
globally accessible. Our modules provide a superset of this
functionality, as objects provide visibility, accessibility, and
namespace behaviours.

Scala [15] includes the concept of “packages”, which can
contain classes, traits, and objects, but not any other defini-
tions, and are imported by their qualified name. Scala also
has “package objects”, which are specialised objects that can
be declared inside a package to augment it with other defi-
nitions. Definitions from another package can be imported
directly into a scope or be accessed through a qualified name.
Package objects are not required in our design, as our mod-
ules are already objects. We do not permit unqualified im-

port because it masks the origin of a method, but some
applications of that behaviour are possible using our dialect
mechanism [9].

Java also includes“packages”, which are weaker than those
in Scala; they serve to subdivide the namespace of classes,
as well as providing a level of visibility intermediate between
public and private. Strnǐsa et al. [17] propose and formally
describe a module system for Java in which a module is an
encapsulation boundary outside these namespace packages.
A module is able to define the interface available to the out-
side world and to import other modules into scope with their
interfaces. These modules also allow combining otherwise-
incompatible components in separate areas of the program
by enforcing a hierarchy on access.

Modula-3 [6] includes both“interfaces”and“modules”. An
interface is a group of declarations without bodies; a mod-
ule may export implementations of part of an interface, and
may import an interface to gain access to its elements. A
module may provide definitions of some, all, or none of the
elements of the interfaces it exports, but will have unquali-
fied access to definitions made elsewhere. A single interface
may have its implementation spread across multiple sepa-
rate modules. Only the interface needs to be referenced or
understood by other code. Our system does not allow these
partial implementations, other than by inheritance, but the
interface (a type) and the implementation (a module object)
may be defined and used separately.

Standard ML [14] includes a module system built around
functors. ML modules make heavy use of static types to
achieve their goals. Modules bind environments, types, and
functions together, and may have multiple different instan-
tiations. The module system is powerful but includes many
constructs with subtle interactions. Because Grace is gradually-
typed, the module system cannot involve any behaviours
that depend on the static type information in a program.
Our system binds types and functions (as methods) together,
with state, but does not support the more complicated type-
dependent behaviour ML modules may have.

Racket [20] includes modules packaging multiple functions
into a unit of distribution. Modules are imported using the
require function, providing it a string generally interpreted
as a relative file path, and defined either explicitly using the
module form or implicitly by the variant of the language a file
is written in. Typed Racket includes a require/typed func-
tion, which assigns local types to the functions and struc-
tures imported from the module. These types are enforced
as contracts. The module itself does not have any run-time
existence as it would in Grace; instead require simply makes
its contents available to the importing code. Our design
does not include an explicit module construct as in Racket;
we have instead opted for consistency in providing one way
of creating a module from Grace code, while abstracting
away the actual behaviour behind the veil of an object. We
were able to build Grace’s “dialects” [9] system, our version
of Racket’s sublanguages concept, using our module system
and without having the dialect participate in the actual con-
struction of the final module, so a special module form was
an unnecessary addition.

Alphard [26] incorporates a module system aimed at en-
abling program verification. Implementation and interface
are separated, so that verification needs only to confirm that
the implementation behaves in accordance with the specifi-
cation. Our system allows types to be defined separately



from the implemenation, but does not incorporate other
verification, which we consider should be only enabled, but
not required, by the language semantics. A dialect [9] can
perform any additional verification desired on a module-by-
module basis.

CLU [13] includes modules that encapsulate the imple-
mentation of a desired behaviour. These modules may in-
teract with each other through public interfaces, which fully
characterise the module. A module may be replaced by an-
other implementation with the same abstract interface. A
special language construct permits collecting together oper-
ations into an abstract interface. Our modules also encap-
sulate implementation and may communicate only through
public interfaces, but do not use a special construct to collect
together different operations. Grace code is written in-place
to construct an object that has the behaviours and state
defined in the module.

Szyperski [19] argues that both modules and classes are es-
sential components for structuring object-oriented programs.
He defines a module as a statically-instantiated singleton
capsule containing definitions of other items (objects, meth-
ods, types, classes) in the language, capable of exposing
some, all, or none of its contents to the outside and provid-
ing unrestricted access to the contents internally. A class is
a template for constructing objects, which may inherit from
other classes and have many instances. While class instances
(objects) exist at run-time, a module is a purely static ab-
straction serving to separate code. One module may im-
port another, obtaining access to the public contents of the
other module through a qualified name. This mechanism is
separate from both the inheritance and instantiation mecha-
nisms supported by classes, but accurately reflects the inten-
tion of the programmers of both modules. Because modules
have no run-time existence, however, it is not possible to
parameterise code with them, and an additional language
mechanism is required to define and import them. Szyper-
ski argues that modules as he describes them are beneficial
for program design because they enhance encapsulation and
structure, and for programming practice because they allow
separate compilation. Modules in our system are singleton
capsules with all of the traits described as desirable, except
that they also have run-time existence. Because modules
are objects, they may be passed as arguments to other code
exactly as any other object, while the gradual structural
typing also allows asserting the programmer’s expectations
about the imported modules as well as their intention to use
them.

The BETA language itself does not include a module sys-
tem, instead supporting modularisation through an inte-
grated programming system [12]. Programmers can split
their programs however they wish, because subtrees of the
abstract syntax tree can be maintained and compiled sepa-
rately, and then combined. Modules are not first-class enti-
ties in BETA, but modularisation of any arbitrarily complex
component is possible. Grace does not depend on such an
integrated editor, although it does not preclude using one;
our modules are first-class top-level entities that may be de-
fined in a file.

In the Go language [2], a package may comprise several
files, all of which declare themselves part of the same pack-
age. The definitions in these files are combined and may
be accessed by clients using Go’s import statement. Once
imported, the module’s public interface is available through

a dotted name, but the module itself has no run-time exis-
tence. Like Grace, Go’s import syntax uses opaque strings,
which in practice are interpreted as filesystem paths. Asso-
ciated tools are able to interpret import paths as URLs and
use them to fetch and install modules from remote locations
when required. Our design does not include this multiple-
file definition semantics, although it is not prohibited either:
the interpretation of the import string is up to the imple-
mentation. The static appearance of modules is similar in
Grace and Go, using dotted qualified-name notation and a
similar import statement, but our modules do have runtime
existence. We do not currently have tools to interpret the
import paths as URLs, but were influenced by Go in allow-
ing the possibility.

7.3 Foreign objects
F# accesses external data sources with“type providers”[18].

A type provider defines a way of accessing a data source
outside the program — like a database or web service — and
integrating it with the program as though it were an inte-
gral part of the system. Type providers are fully integrated
with the IDE: when accessing a web service, for example,
auto-complete menus will appear with the different actions
or sub-fields available from that service in that particular
context. The F# compiler statically generates binding code
according to the definitions in the type provider and what
is obtained from the external source, and ensures that type
information from the remote source is fully propagated into
the program. Our system allows this behaviour, but we do
not have the tooling support necessary necessary to provide
the live access F# allows.

Newspeak’s foreign function interface defines “alien” ob-
jects [3], which come from outside Newspeak code but ap-
pear to their clients exactly like ordinary Newspeak objects.
The implementation of an alien object is unknown and un-
defined, but it understands and responds to messages sent
to it, and knows how to use its own representation to imple-
ment its own behaviour. These alien objects are similar to
our foreign objects, but not necessarily integrated with the
module system.

8. CONCLUSION
Module systems of one kind or another have been part of

programming languages at least since Alphard [26] in 1976
and CLU [13] and Modula in 1977 [24]. In type-centred
languages, modules have been built out of types; in class-
centred languages, modules have been built out of classes;
in function-centred languages, modules have been built out
of functions. The exact goals of modules have varied, but
they generally provide an additional structuring mechanism,
interacting, crosscutting, and (hopefully) modularising the
core language features.

In this paper we have presented our design for a module
system for Grace, which is based around objects. In this
design, a module is an object; more precisely, a module cre-
ates an object when it is loaded. Because classes and types
can be declared within Grace objects, modules can contain
classes and types. Because objects are encapsulated, mod-
ules hide information. Because objects are gradually typed,
Grace modules can be typed statically or dynamically. Be-
cause Grace is structurally typed, the features contributed
by a module can be described by types defined within that
module, by types within the program using the module, or



by types defined in an entirely separate module. This design
meets the requirements we set out in Section 1.2.

It might seem that a module system that added all these
features into a language would be rather heavyweight. The
key idea behind Grace’s module system is that a module
is, essentially, just a Grace object. From this, all the other
features follow.
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