
Towards Collaborative Block-Based Programming
on Digital Tabletops

Ben Selwyn-Smith, Michael Homer, and Craig Anslow
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

Email: {benjamin.selwyn-smith,mwh,craig}@ecs.vuw.ac.nz

Abstract—Block-based programming environments are typi-
cally designed for desktop machines or mobile devices. Desktops
and mobiles are generally designed for single users to interact
with, which makes it hard for multiple users to collaborate
effectively. In this paper we explore the possibilities of digital
multi-touch tabletops to foster collaborative programming in a
block-based paradigm. We note both the different challenges
afforded in this new interaction model and the potential benefits
unique to collaborative programming with tabletops.

I. INTRODUCTION

Block-based programming languages often have a program-
ming environment where blocks represent program syntax
trees as compositions of visual blocks. Digital tabletops are
large horizontally-oriented touch-screen devices that many
users may work on simultaneously [27]. Block-based lan-
guages have shown effectiveness in encouraging engagement,
storytelling, and exploratory programming. Digital tabletops
foster collaboration between multiple local users, who can
work on different tasks in different parts of the table simultane-
ously, or work side-by-side on the same task together, and split
out, come together, or share elements in ad-hoc collaboration.

So far, there is limited work that has combined these
two paradigms. Block-based collaboration has largely taken
the form of “pair programming” – style sharing of a desktop
computer, or networked asynchronous remixing of published
projects. Using digital tabletops with block-based languages
opens up new collaborative mechanisms, but also requires
revisiting some traditional design choices of the paradigm.

In this paper we discuss the advantages – and disadvan-
tages – of such an approach, and the relevant points in the
design space of both tabletop interaction and block-based
programming. We discuss our preliminary experiences cus-
tomizing a version of the Tiled Grace block programming envi-
ronment [14], [15] for multi-user interaction on a tabletop. The
next section addresses related work in both block programming
and digital tabletops; Section III discusses particularities of
the combination of the two paradigms; Section IV addresses
various points in the design space we have explored while
building our prototype system; and Section V concludes and
summarizes our hopes for this novel combination.

II. RELATED WORK

Most block programming systems are designed for use
on traditional keyboard-and-mouse environments, constructing

Fig. 1. Two users editing a program in Tabletop Grace simultaneously.

programs by dragging blocks with the mouse from some tool-
box area onto the workspace. Squeak Etoys [22], Scratch [28],
Blockly [7], Pencil Code [3], GP [26], Calico Jigsaw [6], and
baseline Tiled Grace [11], [15], [16], [14] all have drag-and-
drop as a fundamental element of their interaction model, with
drag and target areas suited for traditional WIMP interfaces.

Some block-based languages have targeted touch-screen
devices, primarily tablets, including Hopscotch [17], TouchDe-
velop [18], Blockly [7], and Snap! [10], although for most that
was not their primary target. TouchDevelop has touch-screen
programming as its main interaction model, providing a point-
and-tap structured editor with menus and large touchable areas.
Hopscotch allows coding on iPad tablets only and has a similar
interaction model to TouchDevelop, but aimed at children.

Tiled Grace [15], [16] is a drag-and-drop block-based pro-
gramming system for the textual Grace language [4], [5]. The
primary distinguishing feature of Tiled Grace is the ability to
switch between fully-editable block and textual views of the
code, with an animated transition showing the correspondence.
Tiled Grace runs in a web browser and uses the traditional
toolbox-and-drag approach, similar to the model of Scratch.

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
This is the authors version of this paper, published in the Blocks & Beyond Workshop (B&B), 10 October 2017, Raleigh, NC, USA. The final publication is
available in IEEE Xplore via http://dx.doi.org/10.1109/BLOCKS.2017.8120412

http://dx.doi.org/10.1109/BLOCKS.2017.8120412


Digital tabletops are large touch-screen multi-touch multi-
user devices with a horizontal aspect, as contrasted with
vertical wall-mounted or free-standing displays [27]. Table-
tops allow users to interact with the device from any edge,
orientation, and to move freely around the table. Numerous
tabletop technologies exist, both commercial and research, but
all incorporate some form of touch detection integrated with
potentially a high-resolution display.

Tabletop devices have been used for collaboration in many
domains, including software development and information vi-
sualization among other domains [1]. Isenberg et al. [20] high-
lighted the use of tables in open-ended information foraging
tasks, where multiple users could examine, annotate, and share
documents with similarity linking to other users, while Kim et
al. [23] described similar techniques for mixed physical-virtual
collaboration between many users. Anslow et al. [2] found
that tabletops assisted users to work together, break apart,
and come back while working on the same broader task
of analyzing software through visualizations, but also noted
limitations when interacting with distant elements. Bragdon et
al. [8] adapted the CodeBubbles IDE to touch devices to
help support software development team meetings, but used a
vertical touch screen. Limited research, however, has focused
on collaborative programming with digital tabletops.

III. FACETS OF BLOCK PROGRAMMING ON TABLETOPS

Tabletops offer some unique challenges for block-based
programming that conventional systems do not address well.

The traditional interaction model of most languages, in the
model of Scratch, is to have a toolbox area to one side from
which the user can select candidate blocks and drag them
into the program. On a tabletop, this interaction breaks down:
because the physical size of a table is so much larger, the
distance from the toolbox to use may be vast, and could
even require moving around the table. If multiple users are
editing the same program at once, the toolbox becomes a site
of physical contention with users crowding to reach it. Some
obvious options here include having toolboxes on each edge,
giving each user a personal toolbox / territory they can move
with them [29], and allowing a user to call a block into being
at any location through a menu or other mechanism.

Drag-and-drop has been seen as a problematic paradigm
on traditional keyboard-and-mouse systems, both for block
programming [15] and in general [9], [19], [25]. On a mobile
touch-screen device, dragging appears more seamless, but
the additional occlusion of the finger and hand, and the
poor resolution of a fingertip, lead to inaccurate interactions
if the touch targets are not large and unambiguous. On a
tabletop, however, a drag ”across the screen” requires a whole-
arm movement or more: for rare interactions, this may be
acceptable, but repeated large movements and those requiring
prolonged finesse and precision are not viable [30].

Tabletops also exacerbate accessibility problems that most
current block-based systems have [24], both of the arm and
possibly moving around the edge to reach or see different parts
of the program, perhaps particularly in multi-user scenarios as

observed by Anslow et al. [2]. As well, both the horizontal
aspect and the usual height of a table can be significant
limitations, as well as the need to see parts of the table clearly
at varying distances and viewing angles. Users with impaired
vision, stamina, or mobility may find using a tabletop-based
block programming system difficult or impossible, perhaps to
a greater degree than traditional desktop solutions.

IV. A TABLETOP BLOCK PROGRAMMING SYSTEM

We have been developing a prototype block programming
system for use on a large digital tabletop, building on Tiled
Grace with the necessary modifications for the new environ-
ment, considering the points noted above. The Tabletop Grace
prototype is at the early stages of development and preliminary
user studies are under way to measure the perceived effec-
tiveness to support collaborative programming. The system is
depicted in use in Figure 1, with two novice programmers
engaged in editing at once on the same screen. We are working
with a Promethean Activtable (a 16:9 46-inch 32-touch table
display), but the experience should generalize to other tabletop
systems. The source code of our prototype is available from
https://github.com/benmss/Tabletop-Grace.

A. Multi-user Collaboration

A key goal of using a tabletop is to enable multiple users
to work simultaneously, with both in-person and computerized
interaction. To avoid contention for the same area, each user
can (but is not required to) create their own independent, re-
orientable, resizable workspace, depicted in Figure 2(a). Users
may work on different parts of the program in a separate area
of the table (for example, one end each) and then exchange,
combine, or share the programs with each other.

Each workspace can be oriented towards any edge of the
table through a pie menu obtained by tapping at the edge, and
a workspace can be temporarily hidden, moved, or reoriented
while retaining its contents. The workspaces are separate
modules [12] that can be run and tested individually, but any
block or group of blocks can be sent to another workspace
through the block’s menu, including to a workspace that is
currently not displayed, and code reuse (or inheritance [21]) is
possible between workspaces. A complete standalone program
can be built in parts and assembled in a shared workspace.

Currently, workspaces have a fixed scale, but are individu-
ally scrollable to an infinite area for large programs. Full or
partial zooming is a possible future feature, though scaling
items to be feasible touch targets is a difficult issue.

B. Floating Pie Menu

While Tiled Grace relies on the traditional toolbox model,
even with potentially-smaller workspaces used by multiple
users that model is untenable on a tabletop. Instead, we are
allowing tiles to be created in situ by use of a long press and
hold which results in displaying a multi-layer pie menu, seen
in Figure 2(c). The menu adapts to the set of tiles available
in the current dialect [13]. The tile-creation interaction then
reduces to primarily a series of taps, while any drag to a

https://github.com/benmss/Tabletop-Grace


(a) Four workspaces displayed at once in different orientations. (b) The “pointer” indicating the drop location for a tile being dragged, and
the destination hole.

(c) A pie menu partially open to construct a variable-related tile. (d) The additional “drag widget” in maximal use, which we found impractical.

Fig. 2. Tabletop Grace features.

more specific position is likely to be short. When creating
several blocks, simply dragging out of the pie menu rather
than tapping creates the tile while leaving the menu open to be
used again, giving the affordance of the traditional categorized
toolbox with better spatial locality.

Similarly, a long press on a tile creates a pie with deletion,
copy, and workspace transfer operations. Both apply to entire
nested block structures. A pie for administrative options, such
as running, saving, changing dialects, switching to text view,
and overlaying errors [15], is available with a two-finger tap
and seen in the second (upright) workspace of Figure 2(a).

C. Repositioning Blocks

In the vein of Scratch, Tiled Grace relies on dragging blocks
to join them together or separate them. As noted, frequent,
fine or lengthy dragging on the table is a problem. Further,
the finger and hand used to drag obstructs the user’s view of
where they are dropping the tile.

We addressed the occlusion problem by adding small
“pointer” displays to the top of tiles being dragged, as shown
in Figure 2(b). The tip of this triangle indicates the location

where the tile will be dropped, rather than the body of the tile
itself.

As for dragging in general, the pie menu reduces the
incidence of distant movements. Significantly larger tiles are
easier to select with a finger, and necessary to be seen clearly
across the table in any case. We have experimented with
providing an additional fingertip-sized drag “widget” attached
to each tile, allowing for even small tiles to be dragged easily.
With many tiles nested in close proximity this obstructed the
reading of the code more than it helped, which can be seen in
the extreme case in Figure 2(d).

We also considered a point-and-click approach: the user
would tap on a block once to select it, and then tap anywhere
else to move the block to that location. This was the initially-
preferred approach, but an ambiguity problem exists: in a
shared workspace, a tap from user B should not result in
moving a block that user A had selected, but there was no
clear way to distinguish this case without adding further steps
to the process that reduced the value of the mechanism. As
collaborative coding is a key focus of this exploration, we set



aside the point-and-tap approach for the moment.
For a single user, however, the technique appears more

helpful. In particular, the ability to use both hands to make
long-distance moves swiftly by tapping with one hand and
then the other in quick succession could be a time-saver
and a very natural affordance. We intend to investigate it
further, and whether other user-identification techniques could
make it a viable model to combine with collaborative block
programming. There may also be times when passing a block
from user A to user B is in fact the desired effect, avoiding
the physical coordination of a direct exchange.

D. Text Input

Some parts of programs require text to be written by the
user, such as defining the name of a variable or method, or
the value of a string to use. While the ActivTable supports
a traditional keyboard peripheral, and operating systems built
for touch provide soft keyboards as well, the issue of focus is
a real one: only one text field can have system-level keyboard
focus at any one time, so only one user can enter text at once.

While obvious, this problem was not one we had anticipated
until working with the table. Simultaneous text entry is not as
rare as expected, with two or three users at once a physical
keyboard is hard to manage, and system-level keyboards
interact poorly with the browser. Instead, we added separate
soft keyboards attached to each text field, with independent
text focus. Typing on the touch table remains awkward.

V. CONCLUSION

Digital tabletops provide a new front for block-based pro-
gramming and collaboration between multiple users. Tabletops
let users work together simultaneously with the ordinary
interpersonal affordances, unlike the asynchronous or network-
based collaboration that some existing block-based program-
ming systems support. There are also some challenges and
limitations associated with using digital tabletops for block
programming systems. In this paper we have presented a
vision for collaborative block programming with tabletops,
highlighting some potential strengths and weaknesses.

Tabletop Grace explores the design space of tabletop block-
programming systems. The prototype allows multiple users
to work together in their own workspace or otherwise, and
modifies existing tabletop interaction methods to suit the
block-programming paradigm. We are now in the process
of conducting user studies to evaluate the effectiveness of
the prototype to support collaborative programming. We hope
that further research in this area can open up new and more
productive techniques for learners and professional block
programmers alike.

REFERENCES

[1] Craig Anslow, Pedro Campos, and Joaquim Jorge, editors. Collaboration
Meets Interactive Spaces. Springer, 2016.

[2] Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. Source-
vis: Collaborative software visualization for co-located environments. In
VISSOFT. IEEE, 2013.

[3] David Bau, D. Anthony Bau, Mathew Dawson, and C. Sydney Pickens.
Pencil Code: Block code for a text world. IDC ’15, pages 445–448,
New York, NY, USA, 2015. ACM.

[4] Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble.
Grace: The absence of (inessential) difficulty. In Onward!, pages 85–
98. ACM, 2012.

[5] Andrew P. Black, Kim B. Bruce, Michael Homer, James Noble, Amy
Ruskin, and Richard Yannow. Seeking Grace: a new object-oriented
language for novices. In SIGCSE. ACM, 2013.

[6] Douglas Blank, Jennifer S. Kay, James B. Marshall, Keith O’Hara,
and Mark Russo. Calico: A multi-programming-language, multi-context
framework designed for computer science education. In SIGCSE, 2012.

[7] Blockly Project. Blockly web site. https://code.google.com/p/blockly/.
[8] Andrew Bragdon, Rob DeLine, Ken Hinckley, and Meredith Ringel

Morris. Code space: Touch + air gesture hybrid interactions for
supporting developer meetings. In ITS, pages 212–221, 2011.

[9] Douglas J. Gillan, Kritina Holden, Susan Adam, Marianne Rudisill, and
Laura Magee. How does Fitts’ law fit pointing and dragging? In CHI,
pages 227–234. ACM, 1990.

[10] Brian Harvey and Jens Mönig. Bringing “no ceiling” to Scratch: Can
one language serve kids and computer scientists? In Constructionism
2010.

[11] Michael Homer. Graceful language extensions and interfaces. PhD
thesis, Victoria University of Wellington, 2014.

[12] Michael Homer, Kim B. Bruce, James Noble, and Andrew P. Black.
Modules as gradually-typed objects. In DYLA. ACM, 2013.

[13] Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and
Andrew P. Black. Graceful dialects. In ECOOP 2014.

[14] Michael Homer and James Noble. A tile-based editor for a textual
programming language. In VISSOFT. IEEE, 2013.

[15] Michael Homer and James Noble. Combining tiled and textual views
of code. In VISSOFT. IEEE, 2014.

[16] Michael Homer and James Noble. Lessons in combining block-based
and textual programming. Journal of Visual Languages and Sentient
Systems, 3, 2017.

[17] Hopscotch Technologies, Inc. Hopscotch - learn to code through creative
play. https://www.gethopscotch.com/.

[18] R Nigel Horspool, Judith Bishop, Arjmand Samuel, Nikolai Tillmann,
Michał Moskal, Jonathan de Halleux, and Manuel Fähndrich. TouchDe-
velop: Programming on the Go. Microsoft Research, 2013.

[19] Kori Inkpen. Drag-and-drop versus point-and-click mouse interaction
styles for children. TOCHI, 8(1):1–33, March 2001.

[20] P. Isenberg, D. Fisher, S. A. Paul, M. R. Morris, K. Inkpen, and
M. Czerwinski. Co-located collaborative visual analytics around a
tabletop display. IEEE Transactions on Visualization and Computer
Graphics, 18(5):689–702, May 2012.

[21] Timothy Jones, Michael Homer, James Noble, and Kim Bruce. Object
inheritance without classes. In ECOOP, 2016.

[22] Alan Kay. Squeak Etoys authoring & media. Research note, Viewpoints
Research Institute, 2005.

[23] KyungTae Kim, Waqas Javed, Cary Williams, Niklas Elmqvist, and
Pourang Irani. Hugin: A framework for awareness and coordination
in mixed-presence collaborative information visualization. In ITS, 2010.

[24] S. Ludi. Towards making block-based programming accessible for blind
users. In Blocks and Beyond Workshop, pages 67–69. IEEE, 2015.

[25] Scott MacKenzie, Abigail Sellen, and William Buxton. A comparison
of input devices in element pointing and dragging tasks. In CHI, pages
161–166. ACM, 1991.

[26] Jens Mönig, Yoshiki Ohshima, and John Maloney. Blocks at your
fingertips: Blurring the line between blocks and text in GP. In Blocks
and Beyond Workshop. IEEE, 2015.

[27] Christian Mller-Tomfelde, editor. Tabletops - Horizontal Interactive
Displays. Springer, 2010.

[28] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. Scratch: pro-
gramming for all. CACM, 52(11):60–67, November 2009.

[29] Stacey D. Scott, M. Sheelagh T. Carpendale, and Kori M. Inkpen.
Territoriality in collaborative tabletop workspaces. In CSCW, 2004.

[30] Aaron Toney and Bruce H. Thomas. Considering reach in tangible and
table top design. In TABLETOP, pages 57–58. IEEE, 2006.

https://code.google.com/p/blockly/
https://www.gethopscotch.com/

	Introduction
	Related Work
	Facets of Block Programming on Tabletops
	A Tabletop Block Programming System
	Multi-user Collaboration
	Floating Pie Menu
	Repositioning Blocks
	Text Input

	Conclusion
	References

